Dynamic Analysis: Difference between revisions
From ASDSO Dam Safety Toolbox
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
---- | ---- | ||
<!-- Introductory paragraph or topic page summary --> | <!-- Introductory paragraph or topic page summary --> | ||
"In dynamics, the time dependence is strictly considered because the calculation of inertial forces requires derivatives respect to actual time to be taken. Dynamic analysis is needed when the variation of displacement with time is so rapid that inertial effects cannot be ignored. Practical examples for these analyses are: earthquakes, vehicle crashes, rocket launches, etc."<ref name="DSO2018-09">[[Guide for Analysis of Concrete Dam Structures using Finite Element Methods (DSO-2018-09) | Guide for Analysis of Concrete Dam Structures using Finite Element Methods (DSO-2018-09), Bureau of Reclamation]]</ref> | |||
==Types of Dynamic Analysis== | ==Types of Dynamic Analysis== | ||
Line 11: | Line 11: | ||
* [[Response Spectrum]] | * [[Response Spectrum]] | ||
* [[Mode Superposition]] | * [[Mode Superposition]] | ||
<!-- In the location of an in text citation, simply enclose the citation as follows: <ref> citation </ref>. Citations will automatically populate. Learn more at https://www.mediawiki.org/wiki/Help:Cite. --> | <!-- In the location of an in text citation, simply enclose the citation as follows: <ref> citation </ref>. Citations will automatically populate. Learn more at https://www.mediawiki.org/wiki/Help:Cite. --> |
Revision as of 18:26, 14 December 2022
"In dynamics, the time dependence is strictly considered because the calculation of inertial forces requires derivatives respect to actual time to be taken. Dynamic analysis is needed when the variation of displacement with time is so rapid that inertial effects cannot be ignored. Practical examples for these analyses are: earthquakes, vehicle crashes, rocket launches, etc."[1]
Types of Dynamic Analysis
Citations:
Revision ID: 5709
Revision Date: 12/14/2022