ASDSO Dam Safety Toolbox

Global Stability of a Dam: Difference between revisions

From ASDSO Dam Safety Toolbox
Jump to: navigation, search
No edit summary
No edit summary
Line 11: Line 11:
<!-- Introductory paragraph or topic page summary -->
<!-- Introductory paragraph or topic page summary -->


When a dam impounds a body of water, it will experience a load or force commonly referred to as hydrostatic pressure. A variety of other forces such as uplift pressure, earth pressure, silt pressure, wave pressure, wind pressure, ice pressure, [[seismic]] acceleration, hydrodynamic pressure, and thermal stress from ambient temperature changes can also act on the dam depending upon site conditions. Global [[stability]] refers to the ability of the dam to withstand all design loading conditions with adequate safety margin. This is a function of the geometry and material properties of the dam as well as the magnitude and combination of loads acting on the structure.
When a dam impounds a body of water, it will experience a load or force commonly referred to as hydrostatic pressure. A variety of other forces such as uplift pressure, earth pressure, silt pressure, wave pressure, wind pressure, ice pressure, [[seismic]] acceleration, hydrodynamic pressure, and thermal stress from ambient temperature changes can also act on the dam depending upon site conditions. Global [[stability]] refers to the ability of the dam to withstand all design [[Loading Conditions|loading conditions]] with adequate safety margin. This is a function of the geometry and material properties of the dam as well as the magnitude and combination of loads acting on the structure.


==Required Data==
==Required Data==
Line 32: Line 32:


==Best Practices Resources==
==Best Practices Resources==
{{Document Icon}} [[Design Standards No. 13: Embankment Dams (Ch. 6 Bulkhead Gates and Stoplogs) | Design Standards No. 13: Embankment Dams (Ch. 6 Bulkhead Gates and Stoplogs), USBR, 2018]]
{{Document Icon}} [[Design and Construction Considerations for Hydraulic Structures: Roller-Compacted Concrete | Design and Construction Considerations for Hydraulic Structures: Roller-Compacted Concrete, USBR, 2017]]
{{Document Icon}} [[Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104) | Strength Design for Reinforced Concrete Hydraulic Structures (EM 1110-2-2104), USACE, 2016]]
{{Document Icon}} [[Design Standards No. 13: Embankment Dams (Ch. 13: Seismic Analysis and Design) | Design Standards No. 13: Embankment Dams (Ch. 13: Seismic Analysis and Design), USBR, 2015]]
{{Document Icon}} [[Design Standards No. 13: Embankment Dams (Ch. 13: Seismic Analysis and Design) | Design Standards No. 13: Embankment Dams (Ch. 13: Seismic Analysis and Design), USBR, 2015]]
{{Document Icon}} [[Design of Hydraulic Steel Structures (ETL 1110-2-584) | Design of Hydraulic Steel Structures (ETL 1110-2-584), USACE, 2014]]
{{Document Icon}} [[Design Standards No. 13: Embankment Dams (Ch. 9 Static Deformation Analysis) | Design Standards No. 13: Embankment Dams (Ch. 9 Static Deformation Analysis), USBR, 2011]]
{{Document Icon}} [[Design Standards No. 13: Embankment Dams (Ch. 4 Static Stability Analysis) | Design Standards No. 13: Embankment Dams (Ch. 4 Static Stability Analysis), USBR, 2011]]
{{Document Icon}} [[Calculating Forces on Components of Hydraulic Structures (ERDC/CHL CHETN-IX-21) | Calculating Forces on Components of Hydraulic Structures (ERDC/CHL CHETN-IX-21), USACE, 2009]]
{{Document Icon}} [[Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053) | Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053), USACE, 2007]]
{{Document Icon}} [[Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053) | Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053), USACE, 2007]]
{{Document Icon}} [[Stability Analysis of Concrete Structures (EM 1110-2-2100) | Stability Analysis of Concrete Structures (EM 1110-2-2100), USACE, 2005]]
{{Document Icon}} [[Stability Analysis of Concrete Structures (EM 1110-2-2100) | Stability Analysis of Concrete Structures (EM 1110-2-2100), USACE, 2005]]
Line 45: Line 38:
{{Document Icon}} [[Gravity Dam Design (EM 1110-2-2200) | Gravity Dam Design (EM 1110-2-2200), USACE, 1995]]
{{Document Icon}} [[Gravity Dam Design (EM 1110-2-2200) | Gravity Dam Design (EM 1110-2-2200), USACE, 1995]]
{{Document Icon}} [[Arch Dam Design (EM 1110-2-2201) | Arch Dam Design (EM 1110-2-2201), USACE, 1994]]
{{Document Icon}} [[Arch Dam Design (EM 1110-2-2201) | Arch Dam Design (EM 1110-2-2201), USACE, 1994]]
{{Document Icon}} [[Lock Gates and Operating Equipment (EM 1110-2-2703) | Lock Gates and Operating Equipment (EM 1110-2-2703), USACE, 1994]]
{{Document Icon}} [[Nonlinear, Incremental Structural Analysis of Massive Concrete Structures (ETL 1110-2-365) | Nonlinear, Incremental Structural Analysis of Massive Concrete Structures (ETL 1110-2-365), USACE, 1994]]
{{Document Icon}} [[Design of Small Dams | Design of Small Dams, USBR, 1987]]
{{Document Icon}} [[Design of Small Dams | Design of Small Dams, USBR, 1987]]



Revision as of 16:54, 14 December 2022


Learn more about the need to consider uplift pressure when designing a gravity structure at DamFailures.org


When a dam impounds a body of water, it will experience a load or force commonly referred to as hydrostatic pressure. A variety of other forces such as uplift pressure, earth pressure, silt pressure, wave pressure, wind pressure, ice pressure, seismic acceleration, hydrodynamic pressure, and thermal stress from ambient temperature changes can also act on the dam depending upon site conditions. Global stability refers to the ability of the dam to withstand all design loading conditions with adequate safety margin. This is a function of the geometry and material properties of the dam as well as the magnitude and combination of loads acting on the structure.

Required Data

Evaluation Criteria

Types of Analyses

Examples

Learn more about the need to consider uplift pressure (DamFailures.org)

Learn from the critical oversights that led to the failure of St. Francis Dam (DamFailures.org)

Best Practices Resources

Design Standards No. 13: Embankment Dams (Ch. 13: Seismic Analysis and Design), USBR, 2015

Earthquake Design and Evaluation of Concrete Hydraulic Structures (EM 1110-2-6053), USACE, 2007

Stability Analysis of Concrete Structures (EM 1110-2-2100), USACE, 2005

Roller-Compacted Concrete (EM 1110-2-2006), USACE, 2000

Gravity Dam Design (EM 1110-2-2200), USACE, 1995

Arch Dam Design (EM 1110-2-2201), USACE, 1994

Design of Small Dams, USBR, 1987

Trainings

On-Demand Webinar: Rehabilitation of Concrete Dams

On-Demand Webinar: Stability Evaluations of Concrete Dams

On-Demand Webinar: Analysis of Concrete Arch Dams

On-Demand Webinar: Introduction to Concrete Gravity Dams


Citations:



Revision ID: 5670
Revision Date: 12/14/2022