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Part 630 – Hydrology 

Chapter 4 – Storm Rainfall Depth and Distribution 

630.0400  General 

A.  Acknowledgements 

(1)  Victor Mockus (retired) originally prepared Chapter 4, “Storm Rainfall Depth and 
Distribution,” in 1964.  The Soil Conservation Service (SCS) updated chapter 4 with minor 
revisions in 1969 and NRCS updated chapter 4 with major revisions in 1993. 

(2)  William H. Merkel (retired), Helen Fox Moody (retired), and Quan D. Quan, Hydraulic 
Engineer, NRCS, Beltsville, MD, prepared this version of chapter 4 under the guidance of 
Claudia C. Hoeft, National Hydraulic Engineer, NRCS, Washington, DC.  Numerous NRCS 
engineers in the States and centers also provided reviews, including Ruth Book (Champaign, 
IL); Geoffrey Cerrelli (retired, Harrisburg, PA); Terry Costner (retired, Temple, TX); Jon 
Fripp (National Design, Construction, and Soil Mechanics Center (NDCSMC), Fort Worth, 
TX); John McClung (retired, Little Rock, AR); Tim Ridley (Morgantown, WV); Ben Smith 
(Tolland, CT); Sonia Jacobsen (retired, St. Paul, MN) and Karl Visser (NDCSMC, Fort 
Worth, TX). Wendy Pierce, illustrator, and Suzi Self (retired, Ft. Worth, TX), National 
Center of Excellence, NRCS, Fort Worth, TX, provided much of the illustration and editing 
services. 

B.  Introduction 

(1)  NRCS Title 210, National Engineering Handbook, Part 630, Chapter 4 (210-NEH-630-4), 
applies to specific rain events and their analyses as well as monthly and annual rainfall.  
Chapter 4 also provides a brief account of the sources, variability, and preparation of storm 
rainfall or precipitation data.  This chapter is used with 210-NEH-630-10, “Estimation of 
Direct Runoff from Storm Rainfall” (NRCS 2004); 210-NEH-630-16, “Hydrographs” (NRCS 
2007); 210-NEH-650-2, “Estimating Runoff and Peak Discharges” (NRCS 1993); and 210-
NEH-630-21, “Design Hydrographs” (NRCS 2019b) for estimating the runoff volumes and 
peak discharges needed to size conservation and water control structures.  Probable maximum 
precipitation (PMP) is described in 210-NEH-630-21, (NRCS 2109b), and Technical Release 
(TR) No. 60, “Earth Dams and Reservoirs” (NRCS 2019a).  Various National Oceanic and 
Atmospheric Administration (NOAA) documents cover areal reduction of rainfall. 

(2)  Storm rainfall depth is the quantity of rain falling within a storm of a specific duration 
distributed uniformly over the watershed area.  Rainfall depth is expressed in inches when 
using English units, and millimeters when using the International System of physical units 
(SI).  Rainfall distribution is the quantity of rain falling in successive time increments of the 
total storm duration.  In this chapter, the cumulative fraction of rain falling at successive 
times up to the storm duration is used to develop the rainfall distribution.  The rainfall 
distribution begins at a value of zero at the beginning of the storm and ends at a value of 1.0. 

(3)  NRCS hydrologic models WinTR-20 (NRCS 2010a), WinTR-55 (NRCS 2009a), and SITES 
(NRCS 2005), referenced at various places in this chapter, utilize storm rainfall depth and 
rainfall distribution to calculate runoff hydrographs.  Principles described in this chapter are 
useful in many hydrologic computer models of Federal, State, local governments, 
universities, consulting engineers, and others that use a distribution of rainfall throughout a 
storm.  The rainfall distribution concept applies to a design or synthetic storm or to an actual 
storm and is described in this chapter.  Standard use of these hydrologic models assumes rain 
falls on the watershed uniformly with respect to spatial and temporal distributions.  This 
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represents a standard use of the hydrologic models, however, WinTR-20 (NRCS 2010a) and 
SITES (NRCS 2005) may also be used to analyze watersheds with nonuniform spatial and 
temporal distributions. 

(4)  The examples illustrate analyses of storm depths and temporal distributions using calculators, 
spreadsheets, computer programs, and geographic information systems (GISs).  Values 
calculated by these methods may differ slightly based upon the method used.  Numerical 
precision is a function of the number of significant digits and the algorithms used in data 
processing, so some differences in numbers may also be found when the examples are 
checked by other means. 

(5)  This document provides website addresses for some data sources and reference items.  If a 
given web address has expired, the user can usually find the information needed with a search 
engine and appropriate keywords. 

630.0401  Sources of Data 

A.  Hydrometeorological data are important elements of NRCS planning, design, and operation of 
water-related structures and systems.  There are several data sources for hydrometeorological data, 
including the— 

(1)  NRCS National Water and Climate Center (NWCC). 
(2)  U.S. Geological Survey (USGS). 
(3)  National Oceanic and Atmospheric Administration (NOAA). 
(4)  National Weather Service (NWS). 
(5)  NOAA National Center for Environmental Information (NCEI), formerly the National 

Climatic Data Center (NCDC). 
(6)  Six regional climate centers (RCCs). 
(7)  State climatologist. 
(8)  Agricultural Research Service (ARS). 
(9)  Forest Service (FS). 
(10)  Other Federal, State, and local agencies with planning responsibilities for water related 

projects, operational responsibilities, or both. 

B.  Rainfall data and related statistical analyses used to design NRCS engineering measures are 
generally those amounts measured and published by the NOAA and NWS.  The choice of NWS data 
is due to its availability, length of record, and consistency on a national basis.  Numerous other 
organizations publish data, research reports, and analyses.  Use of data from other sources is justified 
if the data are more recent or more applicable to a specific project purpose, location, or both.  Rainfall 
data sources should be documented and justification for use of non-NWS data should be provided. 

C.  Although collection of hydrometeorological data is not described in this chapter, for those 
interested in data collection, a comprehensive account and bibliography of rain gage designs, 
installations, and measurement research is available through the Citizen Weather Observer program 
website at http://www.wxqa.com/resources.html (CWOP 2014), and by Kurtyka (1953), NOAA 
(1995), NOAA and the Office of the Federal Coordinator for Meteorological Services and Supporting 
Research (NOAA and OFCM 1995), NWS (1989, 2015a), and others.  Vasquez (1998) gives an 
overview of general weather station operation.  Gages used in the NWS network are described by the 
NWS (1989), Linsley, Kohler, and Paulhus (Linsley, et al, 1982), Brakensiek, et al. (1979), such 
meteorological textbooks as Holton (2004), other NOAA and NWS documents, and similar 
publications. 

D.  Published Data—Precipitation analysis methods, data quality and quantity, data limitations, and 
recommended uses of data contained in technical papers are given in the papers themselves.  

http://www.wxqa.com/resources.html
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Understanding these methods and limitations aids in proper usage of the data and in drawing better 
conclusions from using the data. 

(1)  National Water and Climate Center 
(i)  NRCS’s NWCC obtains, evaluates, manages, and disseminates climatic data to support 

agency programs and activities nationwide.  The NWCC oversees the availability of 
agency-wide climatic data management and analysis services through the Field Office 
Technical Guide (FOTG) (NRCS, 2012a).  Products include climate data, climate reports 
for soil survey regions, wetlands climate tables and documentation, delivered through the 
Agricultural Applied Climate Information System (AgACIS) module within FOTG.  The 
FOTG website at http://efotg.sc.egov.usda.gov/efotg_locator.aspx (NRCS 2012a) allows 
the user to access data for any State and county.  The NWCC also provides links to the 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) at 
http://www.prism.oregonstate.edu/ (OSU 2012), which uses point measurements of 
precipitation, temperature, and other climate elements to produce continuous digital 
coverage for the United States. 

(ii)  The NWCC also provides climate data from their networks.  The SNOw TELemetry 
(SNOTEL) network covers mountainous regions of the Western United States and the 
Soil Climate Analysis Network (SCAN) provides climate data nationally.  NWCC 
supports hourly and 15-minute time series, along with other climatic variables offline.  
Make requests for these special data types to the NWCC through the appropriate State 
office.  Equivalent data are available to the public through NOAA’s NCEI. 

(2)  NOAA and NWS 
(i)  Daily amounts of rainfall measured at gages in the official networks operated by the NWS 

are processed and published in monthly issues of “Climatological Data” for each State by 
the NCEI in Asheville, NC.  The NCEI website at http://www.ncei.noaa.gov/about 
(NCEI, 2017a) maintains station, climate, and radar data for stations throughout the 
continental United States, Hawaii, Guam, Puerto Rico, and the Virgin Islands.  Each State 
has a State climatologist, who can provide information for specific storms, local data 
trends, and climatic data.  State climatologists also coordinate observations made by 
weather observers throughout the States before the data are sent to the NCEI. 

(ii)  The times of daily measurements at stations vary as indicated in the publications.  More 
detailed observations of storm totals and durations are available from the hourly 
precipitation data, also published by the NCEI for each State.  Other Federal and State 
agencies, and universities, publish rainfall data at irregular intervals, often in a special 
storm reports or as research data.  

(iii)  Climatic data, such as precipitation, evaporation, and temperature are available for the 
continental United States and the Pacific and Caribbean Islands.  Annual, monthly, and 
daily data are available in a variety of formats. 

(iv)  Precipitation-frequency data are available from NOAA Atlas 14 (NWS 2006a-c, 2011a-
c, 2012, 2013a-b, 2015a) for both annual and partial duration series at the NWS website, 
http://hdsc.nws.noaa.gov/hdsc/pfds/ (NWS 2005).  Annual series data are based on the 
analysis of precipitation data representing the maximum value occurring within a 
calendar year.  The partial duration series data are based on analysis of the X or more 
largest values occurring in X years.  For example, if the record length is 80 years, the 
highest 80 or more values are selected even though there may be two or more events in 
any given year and there may be years with no values selected. 

(v)  Standard hydrology reference books (Chow 1964, Maidment 1993) describe the 
difference between annual and partial duration series and how to convert from one to the 
other.  The annual and partial duration values are significantly different for the more 
frequent storms, such as the 2-year and 5-year frequencies, with the partial duration value 

http://efotg.sc.egov.usda.gov/efotg_locator.aspx
http://www.prism.oregonstate.edu/
http://www.ncei.noaa.gov/about
http://hdsc.nws.noaa.gov/hdsc/pfds/
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greater than the annual series value.  At the 10-year and lesser frequencies, or greater 
return periods, differences are insignificant.  The partial duration series includes the 1-
year precipitation frequency whereas the annual series does not. 

(vi)  NRCS has historically used the partial duration series for design of engineering projects.  
Engineering projects are subject to all storm events and not just the largest storm of any 
given year.  For projects where results are needed for frequent storms, the partial duration 
series may also be used because it includes the 1-year frequency. 

(vii)  The Hydrometeorological Design Studies Center (HDSC) of the NWS has a number of 
reports that summarize many years of weather observations over the country.  The NWS 
uses refined statistical and error analyses to make these publications as reliable as 
possible.  In many kinds of hydrologic work, it is unnecessary to use actual rainfall data 
because published analyses of data provide the required information in more usable form. 

(viii)  In 1975, the SCS West Technical Service Center released Technical Note Hydrology 
PO-6 (SCS 1975), which includes a procedure to determine the 10-day precipitation for 
11 western States.  The 10-day rainfall values are based on NOAA Atlas 2 (NWS 1973) 
data.  NOAA Atlas 14 updates the data for a number of these States.  However, NOAA 
Atlas 2 is still the most recent rainfall frequency information for Idaho, Montana, Oregon, 
Washington, and Wyoming.  When NOAA Atlas 14 is complete for these States, 
procedures and information in NOAA Atlas 14 will replace PO-6.  

(ix)  The NOAA and NCEI collect Next Generation Weather Radar (NEXRAD) radar data 
and make the data and associated products available at the website 
www.ncdc.noaa.gov/data-access/radar-data/nexrad (NCEI 2017b).  The site includes an 
inventory and product search link that will lead to available data, as well as a Weather 
and Climate Toolkit software system for download.  This toolkit allows the user to import 
and view various radar and precipitation data.  A storm event database with national 
publications by month and annual summary with an interactive search by date and 
location of a storm event database are also available. 

(x)  NOAA and the NWS published the following rainfall data analyses, many in cooperation 
with NRCS.  Some of these documents may have been updated since the dates listed 
here.  It is important that users select the most up-to-date documents for a State or area to 
be used for a rainfall reference unless a special study applies to that location.  The list is 
not a complete list of precipitation frequency and PMP publications.  Most of these 
publications are available at the NWS website http://hdsc.nws.noaa.gov/hdsc/pfds/.  
Other sources of published data include State and local agencies, and groups with 
interests in irrigation, electric supply, agricultural water use, reservoir operations, and 
dam safety, to name a few.  The engineer should ensure that the use of alternative data is 
acceptable to the relevant technical and regulatory authorities.  Documents covering 
durations from 5 minutes to 60 days and storm return periods up to 1,000 years and 
probable maximum precipitation (PMP): 
• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 1, 

version 4.0:  Semiarid Southwest.  National Weather Service, 2006.  (NWS 2006a) 
• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 2, 

version 3.0: Delaware, District of Columbia, Illinois, Indiana, Kentucky, Maryland, 
New Jersey, North Carolina, Ohio, Pennsylvania, South Carolina, Tennessee, 
Virginia, West Virginia.  National Weather Service, 2006.  (NWS 2006b) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 3, 
version 4.0: Puerto Rico and the U.S. Virgin Islands.  National Weather Service, 
2006.  (NWS 2006c) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 4, 
version 3.0: Hawaiian Islands.  National Weather Service, 2011.  (NWS 2011a) 

http://www.ncdc.noaa.gov/data-access/radar-data/nexrad
http://hdsc.nws.noaa.gov/hdsc/pfds/
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• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 5, 
version 3.0: Selected Pacific Islands.  National Weather Service, 2011.  (NWS 
2011b) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 6, 
version 2.0: California.  National Weather Service, 2011.  (NWS 2011c) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 7, 
version 1.0: Alaska.  National Weather Service, 2012.  (NWS 2012) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 8, 
version 2.0: Midwestern States.  National Weather Service, 2013.  (NWS 2013a) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 9, 
version 2.0: Southeastern States.  National Weather Service, 2013.  (NWS 2013b) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 10: 
Northeastern States (Connecticut, Maine, Massachusetts, New Hampshire, New 
York, Rhode Island, and Vermont).  National Weather Service, 2015.  (NWS 2015a) 

• NOAA Atlas 14, Precipitation-Frequency Atlas of the United States.  Volume 11:  
Texas.  National Weather Service, 2018. (NWS 2018) 

• NOAA Atlas 2.  Precipitation Atlas of the Western United States: Volume 1—
Montana, Volume 2—Wyoming, Volume 5—Idaho, Volume 9— Washington, 
Volume 10—Oregon.  National Weather Service, 1973.  (NWS 1973) 

• Hydrometeorological Report No. 39, Probable Maximum Precipitation in the 
Hawaiian Islands.  U.S. Weather Bureau, 1963.  (Weather Bureau 1963a) 

• Hydrometeorological Report No. 41, Probable Maximum and TVA Precipitation over 
the Tennessee River Basin above Chattanooga.  U.S. Weather Bureau, 1965.  
(Weather Bureau 1965) 

• Hydrometeorological Report No. 42, Meteorological Conditions for the Probable 
Maximum Flood on the Yukon River above Rampart, Alaska.  U.S. Weather Bureau, 
1966.  (Weather Bureau 1966) 

• Hydrometeorological Report No. 47, Meteorological Criteria for Extreme Floods for 
Four Basins in the Tennessee and Cumberland River Watersheds.  National Oceanic 
and Atmospheric Administration and Tennessee Valley Authority, 1973.  (NOAA 
and TVA 1973) 

• Hydrometeorological Report No. 48, Probable Maximum Precipitation and Snowmelt 
Criteria for Red River of the North above Pembina, and Souris River above Minot, 
North Dakota.  National Oceanic and Atmospheric Administration and U.S Army 
Corps of Engineers, 1973.  (NOAA and USACE 1973) 

• Hydrometeorological Report No. 49, Probable Maximum Precipitation Estimates, 
Colorado River and Great Basin drainages, National Oceanic and Atmospheric 
Administration and U.S. Army Corps of Engineers, 1977, reprint 1984.  (NOAA and 
USACE 1984) 

• Hydrometeorological Report No. 50, Meteorology of Important Rainstorms in the 
Colorado River and Great Basin Drainages.  National Oceanic and Atmospheric 
Administration and U.S. Army Corps of Engineers, 1981.  (NOAA and USACE 
1981) 

• Hydrometeorological Report No. 51, Probable Maximum Precipitation Estimates, 
United States East of the 105th Meridian.  National Oceanic and Atmospheric 
Administration and U.S. Army Corps of Engineers, 1978.  (NOAA and USACE 
1978) 

• Hydrometeorological Report No. 52, Application of Probable Maximum 
Precipitation Estimates—United States East of the 105th Meridian.  National Oceanic 



Title 210 – National Engineering Handbook 

(210-630-H, Amend. 88, Aug 2019)  
630–4.6 

and Atmospheric Administration and U.S. Army Corps of Engineers, 1982.  (NOAA 
and USACE 1982) 

• Hydrometeorological Report No. 53, Seasonal Variation of 10-square-mile Probable 
Maximum Precipitation Estimates, United States East of the 105th Meridian.  
National Oceanic and Atmospheric Administration and U.S. Nuclear Regulatory 
Commission, 1980.  (NOAA and NRC 1980) 

• Hydrometeorological Report No. 54, Probable Maximum Precipitation and Snowmelt 
Criteria for Southeast Alaska., National Oceanic and Atmospheric Administration 
and U.S. Army Corps of Engineers, 1983.  (NOAA and USACE 1983) 

• Hydrometeorological Report No. 55A, Probable Maximum Precipitation Estimates 
United States Between the Continental Divide and the 103rd Meridian, Report and 
Plates I-VI.  National Oceanic and Atmospheric Administration, U.S. Army Corps of 
Engineer, and Bureau of Reclamation, 1988.  (NOAA, USACE, and BOI 1988) 

• Hydrometeorological Report No. 56, Probable Maximum and TVA Precipitation 
Estimates with Areal Distribution for Tennessee River Drainages Less Than 3,000 
mi2 in Area.  National Oceanic and Atmospheric Administration and Tennessee 
Valley Authority, 1986.  (NOAA and TVA 1986) 

• Hydrometeorological Report No. 57, Probable Maximum Precipitation – Pacific 
Northwest States: Columbia River (including portions of Canada), Snake River and 
Pacific Coastal Drainages.  National Oceanic and Atmospheric Administration, U.S. 
Army Corps of Engineers, and Bureau of Reclamation, 1994.  (NOAA, USACE, and 
BOI 1994) 

• Hydrometeorological Report No. 58, Probable Maximum Precipitation in California - 
Calculation Procedure.  National Oceanic and Atmospheric Administration and U.S. 
Army Corps of Engineers, 1998.  (NOAA and USACE 1998) 

• Hydrometeorological Report No. 59, Probable Maximum Precipitation in California - 
Shapefiles.  National Oceanic and Atmospheric Administration and U.S. Army Corps 
of Engineers, 1999.  (NOAA and USACE 1999) 

• Technical Paper No. 40, Rainfall Frequency Atlas of the United States, U.S. Weather 
Bureau, 1961.  (Weather Bureau 1961a) 

• Technical Paper No. 42, Generalized Estimates of Probable Maximum Precipitation 
and Rainfall-Frequency Data for Puerto Rico and Virgin Islands, U.S. Weather 
Bureau, 1961.  (Weather Bureau 1961b) 

• Technical Paper No. 47, Probable Maximum Precipitation and Rainfall- Frequency 
Data for Alaska.  U.S. Weather Bureau, 1963.  (Weather Bureau 1963b) 

• Technical Paper No. 49, Two- to Ten-Day Precipitation for Return Periods of 2 to 
100 years in the Contiguous United States, U.S. Weather Bureau, 1964.  (Weather 
Bureau 1964) 

• NOAA Technical Memorandum NWS HYDRO-35, Five- to 60-Minute Precipitation 
Frequency for the Eastern and Central United States, National Weather Service, 
1977.  (NWS 1977) 

• NOAA Technical Memorandum NWS HYDRO-39, Probable Maximum 
Precipitation Maximum Precipitation for the Upper Deerfield Drainage 
Massachusetts/Vermont.  National Weather Service, 1984.  (NWS 1984) 

• NOAA Technical Memorandum NWS HYDRO-41, Probable Maximum 
Precipitation Estimates for the Drainage above Dewey Dam, Johns Creek, Kentucky.  
National Weather Service, 1985.  (NWS 1985) 

• NOAA Technical Memorandum NWS HYDRO-45, Relationship between Storm and 
Antecedent Precipitation over Kansas, Oklahoma, and Eastern Colorado.  National 
Weather Service, 1995.  (NWS 1995a) 
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• NOAA Technical Memorandum NWS HYDRO-46, A Climatic Analysis of 
Orographic Precipitation over the Big Horn Mountains.  National Weather Service, 
1995.  (NWS 1995b) 

• NOAA Technical Report NWS 21, Interduration Precipitation Relations for Storms – 
Southeast States.  National Weather Service, 1979.  (NWS 1979) 

• NOAA Technical Report NWS 25, Comparison of Generalized estimates of Probable 
Maximum Precipitation with Greatest Observed Rainfalls.  National Weather 
Service, 1980. (NWS 1980) 

• NOAA Technical Report NWS 27, Interduration Precipitation Relations for Storms – 
Western United States.  National Weather Service, 1981.  (NWS 1981) 

• Short duration rainfall relations for the western United States, 1986.  Arkell, R.E. and 
F. Richards.  Preprint volume of the Conference on Climate and Water Management, 
American Meteorological Society, pp 136-141.  (Arkell and Richards 1986) 

(xi)  The NOAA and NWS publications are available from the HDSC websites 
http://www.nws.noaa.gov/oh/hdsc/relevant_publications.html and 
http://www.nws.noaa.gov/oh/hdsc/studies/pmp.html.  Engineers should visit these 
websites to download reports and data as well as look for periodic updates of reports. 

(3)  Northeast Regional Climate Center (NRCC)—The NRCC completed a precipitation-
frequency analysis for New York and New England States of Maine, New Hampshire, 
Vermont, Massachusetts, Connecticut, and Rhode Island in 2012.  Rainfall data for New 
York and the New England States are found at the NRCC website 
http://precip.eas.cornell.edu/ (NRCC 2012).  The NWS published the updated NOAA Atlas 
14 volume 10 for New York and the New England States in 2015.  The updated NOAA Atlas 
14 should be used for NRCS projects in these States. 

E.  Unpublished Data 

(1)  Various Federal and State agencies sometimes make field surveys after an unusually large 
storm to collect bucket survey data.  Bucket surveys are measurements of rainfall caught in 
narrow-bore tubes, such as those available in hardware or agricultural supply stores, buckets, 
watering troughs, bottles, and similar containers.  Ordinarily, these data are used to give more 
detail to rainfall maps based on standard gage data.  The bucket gage data should be carefully 
evaluated.  Data from bucket surveys are generally not published but are available in the 
offices of the gathering agency.  

(2)  Narrow-bore tubes used by many farmers and ranchers have given results almost equal to 
those from standard gages.  These tube gages must be properly exposed and serviced to 
obtain such results.  Many farmers, ranchers, and individuals keep a daily or storm record of 
measured rainfall amounts.  Newspaper offices, banks, water-treatment plants and municipal 
offices often collect measurements at their own gages and keep daily records.  These data are 
recommended for use with hydrologic model calibration for a historical storm or as a 
reference to historical storms.  Use of unpublished data for design purposes is not 
recommended. 

630.0402  Rainfall Over a Watershed 

A.  In watershed studies, it is often necessary to know the average depth of rainfall over an area.  The 
methods described apply to both the estimation of average storm event rainfall and average rainfall or 
precipitation for a certain time period, such as annual or monthly. 

B.  The average depth can be determined in various ways, depending on the kind of data used.  If the 
rainfall amount is taken from one of the NWS documents, it is for a specific point and the point-area 
relationship given in the paper is used to estimate the average depth over the area.  It is difficult to 

http://www.nws.noaa.gov/oh/hdsc/relevant_publications.html
http://www.nws.noaa.gov/oh/hdsc/studies/pmp.html
http://precip.eas.cornell.edu/
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obtain an average depth from data of several rain gages because the number and locations of gages 
and storm variability influence the results.  Manual and geospatial methods of using such data are 
given in this section.  The choice of methods depends to some extent on what data are available and 
where data are available and to some extent on the background and preference of the user. 

C.  Methods of Estimating Average Depths 

(1)  Use of One Gage 
(i)  How well the rainfall measured at a single gage represents the average depth over an area 

depends on— 
• Distance from the gage to the center of the area. 
• Size of the area. 
• Relative areal extent of significant storm rainfall with respect to the watershed area. 
• Duration and frequency of rainfall amounts being analyzed. 
• Orographic and other effects of the topography of the locality. 

(ii)  Figures 4-1 through 4-4 illustrate the effects of the first two influences.  Since areal 
extent, duration, and frequency of rainfall amounts are not directly apparent in figures 4-1 
through 4-4, they are two of the reasons why there may be significant scatter in the 
plotted points. 

(iii)  The effect of distance from the center of the watershed to the gage is shown in figures 4-
1 and 4-2.  A single gage is located near the center of a 0.75-square-mile watershed (fig. 
4-1).  Measured storm rainfalls at the gage are seen to be quite close to the watershed 
averages, which were determined using a dense network of gages. 

 

(iv)  However, in figure 4-2, where the gage is located 4 miles outside the watershed 
boundary, the measured storm rainfalls at the gage often differ significantly in the 
statistical sense from the watershed averages.  

Figure 4-1:  Measured Storm Rainfall at One 
Interior Watershed Gage Compared to an Interior 
Network 
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(v)  A similar effect occurs when the area of application is increased, as shown in figure 4-3, 
where the storm rainfall measured at a gage on the boundary of a 5.45 square mile 
watershed is compared to the results from a denser net of gages.   

 

(vi)  In figure 4-4, the watershed average annual rainfall measured at the single gage on the 
watershed boundary is compared to the watershed average annual rainfall measured by 
the denser network of gages.  Figures 4-1 through 4-4 are all from data from ARS 
Experimental Agricultural Watersheds in Hastings, NE. 

Figure 4-2:  Measured Storm Rainfall at One 
Interior Watershed Gage Compared to an Outside 
Gage 

Figure 4-3:  Measured Storm Rainfall at One Gage 
on the Watershed Boundary Compared to Average 
Storm Rainfall 
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(vii)  The correspondence between measured storm rainfall and area averages is close where 

the rainfall amounts being used are sums, such as monthly or annual rainfalls, because the 
variations for single storms tend to offset each other.  The gage and watershed used for 
figure 4-3 are also used in figure 4-4 where annual rainfalls are plotted.  The differences 
between gage and watershed amounts in figure 4-4 are considerably smaller than those 
for the individual storm comparisons of figure 4-3. 

(viii)  The correspondence between gage and area amounts is also close if the storm rainfalls 
are used with the methods shown in 210-NEH-630-18 (NRCS 2012b) to construct 
frequency lines for gage and area amounts.  The correspondence occurring then is for 
amounts having the same frequency. 

(ix)  The examples use data taken from a non-mountainous region where orographic 
influences are not significant; otherwise, the results might be very different.  The 
examples show that the use of a single gage may lead to errors in areal estimates and 
raises the question of how much error is permissible.  Accuracy of rainfall estimates is 
described in section 630.0402D of this chapter.  

(2)  Isohyetal Method 
(i)  The spacing of gages in an areal network is seldom sufficiently uniform to permit use of 

the numerical average of the gage measured storm rainfall as the area average.  An 
isohyet is a line connecting points of equal rainfall depth.  Isohyetal maps are often used, 
with networks of any configuration, to get area averages or for studies of rainfall 
distributions.  The map is made by drawing the lines in the same manner that contour 
lines are drawn on topographic maps, using the gage locations as data points. 

 (ii)  Example 4-1.—Figures 4-5 through 4-8 illustrate the construction and application of the 
isohyetal method to a research watershed in Nebraska.  Four rain gages are associated 
with the watershed; two are within the watershed boundaries, one is on the boundary, and 
a fourth is just outside the watershed, as in figure 4-5.  The open circles are centered on 
the gage locations.  The rainfall amounts are 1.40, 1.54, 1.94, and 1.55, going clockwise 
from the upper left. 
• Step 1.—Locate the rain gages on the watershed map and plot the rainfall amounts as 

shown on figure 4-5. 

Figure 4-4:  Measured Annual Rainfall at One Gage 
on the Watershed Boundary Compared to Average 
Annual Rainfall 
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• Step 2.—Interpolate the amounts falling between the rain gages.  Figure 4-6 shows 
one such line. 

• Step 3.— Using the estimated rainfalls of step 2, develop isohyets to cover the whole 
watershed as illustrated on figure 4-7.  Determination of the orientation of the lines is 
subjective with the limited data shown in figure 4-6.  Data from local bucket surveys 
may contribute significantly to locating the lines, if the bucket survey data are 
carefully evaluated.  For the good quality bucket survey data collected, plot the 
location on the map and record the rainfall volume.  Use these values as additional 
rain gage locations and measurements in the method selected to determine the 
average watershed rainfall.  

 

 

• Step 4.— Determine the land area between each adjacent isohyet and get the 
watershed average by weighting the rainfall depths for the parts as in figure 4-8.  For 

Figure 4-5: Rain Gage Locations 
and Amounts in a Small Nebraska 
Watershed 

Figure 4-7:  Isohyetal Map 
Developed from Figure 4-5 and 
Figure 4-6 

Figure 4-6: Estimate the Rainfall 
Amounts Falling Between the Gage 
Locations 
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this example, the area covered by each isohyet was measured using a dot counter.  A 
dot counter is a transparent sheet with dots placed in a grid format of equal horizontal 
and vertical spacing.  Prior to general use of GIS, it was a good quick method to 
estimate areas of land delineated on maps.  For this example, the total area is the sum 
of all the individual parts, or 174 dots.  The percentage of the total area in each 
isohyet is the number of points in column 3 divided by 174 and is listed in column 4.  
The weighted amount of rainfall in each isohyetal area is calculated as column 2 
times column 4 and is listed in column 5.  The sum of the weighted amounts gives 
the average watershed rainfall, 1.61 inches. 

 
 

Figure 4-8:  Tabulation of Isohyetal Weights from Figure 4-7. 
Rainfall limits 

(in) 
Rainfall (in) Number of 

points* 
Fraction of 

area 
Rainfall weighted 

by area 
(1) (2) (3) (4) (5) 

<1.4 1.4 5 0.03 0.042 
1.4–1.5 1.45 38 0.22 0.319 
1.5–1.6 1.55 47 0.27 0.418 
1.6–1.7 1.65 37 0.21 0.346 
1.7–1.8 1.75 28 0.16 0.28 
1.8–1.9 1.85 11 0.06 0.111 

>1.9 1.9 8 0.05 0.095 
Totals 

 
174 1.00 1.611 

Average rainfall 1.61 in 
*The number of points was determined using a dot counter, a method of estimating area. 

(iii)  A denser network may give a more complicated isohyetal map as in figure 4-9, where 
the total rain gage network on this research watershed is used to depict the storm. 

(iv)  Figure 4-10 tabulates the data for figure 4-9.  There are changes in depth on parts of the 
watershed, but the watershed average of 1.63 inches is not significantly different from the 
estimate derived from figure 4-7 and computed in figure 4-8.  Generally, the more gages 
or rainfall depth measurements there are, the more accurate the estimate of mean 
precipitation over an area.  A particular network may be excessively close for one kind of 
estimate at the same time that it is too open for another kind.  The relative error of an area 
average obtained through use of a network can be estimated as shown in Section 
630.0402D, “Accuracy.” 
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Figure 4-10:  Tabulation of Watershed Rainfall from Isohyetal Map (fig. 4-9). 

Rainfall limits 
(in) 

Rainfall 
(in) 

Number 
of points* 

Fraction 
of area 

Rainfall 
weighted by 

area 
(1) (2) (3) (4) (5) 

<1.4 1.4 3 0.02 0.028 
1.4–1.5 1.45 25 0.14 0.203 
1.5–1.6 1.55 58 0.33 0.511 
1.6–1.7 1.65 31 0.18 0.297 
1.7–1.8 1.75 34 0.20 0.35 
1.8–1.9 1.85 17 0.10 0.185 

>1.9 1.9 6 0.03 0.057 
Totals 

 
174 1.00 1.631 

Average rainfall 1.63 in 
*The number of points was determined using a dot counter, a method of estimating area. 

(3) Thiessen Method 
(i)  Another method of using a rain gage network for estimating watershed average depths 

especially suitable for electronic computation is the Thiessen method, shown in figures 4-
11 through 4-13.  In this method, the watershed area is divided into subareas using rain 
gages as hubs of polygons.  The subareas are used to determine ratios that are multiplied 
by the subarea rainfall and summed to get the watershed average depth.  The ratios are 
the percentages of area in the basin represented by each rain gage.  Construction of the 
polygon diagram is illustrated in figures 4-11 and 4-12.  

Figure 4-9:  A Denser Rain Gage 
Network Providing a More Detailed 
Isohyetal Map 
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Figure 4-11:  Watershed with Three 
Rain Gages Analyzed by the Thiessen 
Method 

Figure 4-12:  Thiessen Weights Method 
– Step 2. 

  

 

 

(ii)  The Thiessen weights are the ratio of the gage’s polygon area divided by the area of the 
entire watershed, as indicated in figure 4-13.  Watershed average depths are computed as 
shown in figure 4-14.  If a gage is added or removed from the network, a new diagram 
must be drawn and new weights computed.  Figure 4-15 shows the Thiessen method for a 
denser rain gage network. 

 

Figure 4-13:  Determination of 
Thiessen Weights – Step 3. 
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Figure 4-14:  Watershed Rainfall Depth by the Thiessen Method Applied to figure 4-13. 
Rain gage 

ID 
Measured 
rainfall (in) 

Thiessen 
weight 

Weighted 
rainfall (in) 

A 1.40 0.407 0.570 
B 1.54 0.156 0.240 
C 1.94 0.437 0.848 

 Sum 1.000 1.658 

The watershed weighted rainfall depth is 1.658 inches, which is rounded to 1.66 inches. 

 

(iii)  Example 4-2.—This example demonstrates the Thiessen method using three rain gages. 
• Step 1.—Draw lines connecting the rain gages, as in figure 4-11. 
• Step 2.—Draw lines bisecting the lines connecting the gages, as in figure 4-12. 
• Step 3.—Compute the weight of each polygonal section within the polygon as shown 

in figures 4-13 and 4-14.  The total area of the watershed was computed to be 199 
acres.  The rainfall at gage A is 1.40 inches, that at gage B is 1.54 inches, and that at 
gage C is 1.94 inches.  The areas of each individual polygon were computed to be 81, 
31, and 87 acres, with Thiessen weights of 0.407, 0.156, and 0.437 respectively.  
Each area weight multiplied by the gage rainfall yields the weighted rainfall for that 
gage, as shown in figure 4-14. 

(iv)  The denser Thiessen network will generally yield a slightly different answer.  The 
Thiessen method is not used to estimate rainfall depths of mountainous watersheds since 
elevation is a strong factor influencing the areal rainfall distribution (see Section 
630.0402E, “Orographic influences”).  

(4)  Use of GIS to Create an Isohyetal Map and Compute Mean Precipitation 
(i)  An isohyetal map may be created for a layer of points each with a rainfall amount using 

GIS.  There are various options using GIS software to develop a surface based on the 
rainfall points.  The surface, a product of this technology, is a grid layer with a rainfall 
value for each cell.  A specific cell size, such as 10 meters or 30 meters or larger, must be 
selected.  From this grid layer of rainfall and a GIS layer of the watershed boundary, 

Figure 4-15:  A Denser Thiessen Network 
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statistics including the maximum, minimum, and mean rainfall for the watershed may be 
computed. 

(ii)  Figure 4-16 was developed for a small watershed in Coshocton County, OH, using GIS 
methods. 
• Step 1.—Digitize the watershed boundary (fig. 4-16). 

  

• Step 2.—Develop a point layer with the rainfall point measurements in inches (fig. 4-
17).  

 

Figure 4-16:  Digitized Watershed Boundary for a Watershed in Coshocton County, OH. 

Figure 4-17:  Point Rainfall Measurements for a Watershed in Coshocton County, OH. 
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• Step 3.—Many NRCS offices use Environmental Sciences Research Institute (ESRI) 
GIS software (ESRI 2012).  Therefore, the example refers to commands in the ESRI 
GIS software. The “Spatial Analyst Interpolation” command in ArcGIS is used to 
generate the isohyetal map in figure 4-18.  Other GIS software should have similar 
capabilities. 

 

• Step 4.—The “Spatial Analyst Zonal Statistics as Table” command executed in 
ArcGIS produces figure 4-19 where the minimum, maximum, range, and mean 
rainfall for the watershed are computed in the last four columns.  The mean rainfall is 
4.54 inches.  The first two columns contain GIS identifiers.  The next two columns 
are the number of rasters inside the watershed and the area of the watershed in square 
meters.  The last four columns give the minimum, the maximum, the range, and the 
mean of the rainfall values. 

 

(5)  Use of NOAA Atlas 14 GIS Data to Derive Mean Watershed Precipitation 
(i)  If the watershed is of significant size (more than about 1 square mile), a point value of 

rainfall may not be accurate.  Instead, a mean rainfall for the watershed may be more 
representative.  If the storm event rainfall varies within the watershed, an areal mean may 
be calculated using GIS. 

Figure 4-18:  Isohyetal Map based on the Point Rainfall Measurements in figure 4-17. 

Figure 4-19:  Table of Zonal Statistics Generated by Spatial Analyst Zonal Statistics in GIS 
Program 
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(ii)  This example illustrates how to calculate an areal mean 25-year, 24-hour rainfall for a 
watershed using NOAA Atlas 14 GIS data and data from Herder Creek in Elko County, 
NV. 
• Step 1.—Download and prepare the GIS rainfall grid for desired durations and return 

periods.  For this example, download the 25-year 24-hour GIS grid for the western 
State region (which includes Nevada) from the NOAA Atlas 14 website.  Prepare the 
grid according to instructions available from the National Water Quality and Quantity 
Team West National Technology Support Center (WNTSC) website 
http://go.usa.gov/rXYw under “Technical Information.” 

• Step 2.—Digitize the watershed boundary on a base map such as a digital raster 
graphic map (DRG), and develop the drainage area from GIS commands, such as 
ESRI ArcHydro Tools or Spatial Analyst, or from the Watershed Boundary Dataset 
(WBD), GIS maps available for watersheds with defined hydrologic unit codes 
(https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/water/watersheds/dataset/, 
USGS, 2013). For the Herder Creek, NV, watershed, digitize the boundary directly 
from a DRG (fig. 4-20). 

  

(iii)  Use the ESRI Identify icon to determine that the 25-year 24-hour rainfall at the far 
western edge of the watershed is 2.78 inches and at the far southeastern edge of the 
watershed is 4.07 inches.  This is a significantly large range of rainfall.  Treating this 
watershed as a homogeneous unit assumes a single runoff curve number, time of 
concentration, and uniform rainfall. 

(iv)  An alternative is to divide the watershed into subareas and determine the mean rainfall 
for each subarea.  This allows for each subarea to have its own individual runoff curve 
number and time of concentration and rainfall value.  Figure 4-21 shows the watershed 
divided into eight subareas. 

Figure 4-20:  Watershed Boundary for Herder Creek, NV 

http://go.usa.gov/rXYw
https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/water/watersheds/dataset/
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(v)  Figure 4-22 shows the watershed boundary divided into subareas overlaid on the GIS 
rainfall grid.  The rainfall grid has about a half-mile or about 800-meter resolution. 

 

(vi)  Each raster has a rainfall value assigned.  The beige colors on the western edge represent 
the lowest rainfall values and the yellow-green rasters on the southeastern edge of the 
watershed represent larger values.  Execute the ESRI GIS command “Spatial Analyst 
Zonal Statistics” to derive the statistics for each of the eight subareas.  These statistics 
include area, maximum, minimum, range, mean, and standard deviation.  In figure 4-23, 
only the area and mean rainfall are shown. 

Figure 4-21:  Herder Creek, NV, Watershed Divided into 8 Subareas 

Figure 4-22:  Herder Creek, NV, Watershed Boundary Overlaid on the Rainfall Grid 
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Figure 4-23:  GIS Areal and Rainfall Statistics for Herder Creek, NV 
Area 
number 

Area (mi2) Mean 25-
yr, 24-hr 
rainfall 

1 0.49 2.86 
2 0.36 3.32 
3 0.96 3.89 
4 0.76 4.05 
5 0.79 3.82 
6 1.63 4.00 
7 1.00 3.66 
8 0.75 3.94 

The total watershed area is 6.74 square miles.  The mean rainfall calculated for the total watershed is 3.79 
inches.  

(6)  Other Methods - Other methods for estimating areal average rainfall from a system of point 
rain gage measurements include the Reciprocal-Distance-Squared method (Wei and 
McGuiness 1978; Singh and Chowdhury 1986) and use of geostatistics (kriging) (McCuen 
and Snyder 1986, Bras and Rodriguez-Iturbe 1985). 

D.  Accuracy 

(1)  Accuracy of any rainfall estimate depends mainly on the distance between a gage and the 
point of application of the estimate, regardless of the method used.  In mountainous areas, the 
vertical distance may be more important than the horizontal, but for flat or rolling terrain, 
only the horizontal distance typically matters.  Exceptions occur where rain shadows and lake 
effect precipitation may vary greatly across a large watershed that does not have large relief 
variability.  For a network, both distance and arrangement of gages affect the accuracy.  
Unless special studies at a gage site have been made, the possible differences between gage 
and average watershed rainfalls are generally ignored. 

(2)  Figure 4-24 can be used to estimate the range of possible differences likely to occur 7 times 
out of 10 if the measured storm rainfall at a single gage is used as a depth for a location some 
distance away.  It was developed from information given by Huff and Neill (1957) for small 
areas in Illinois.  The watersheds studied ranged from 19 acres to 400 square miles.  Even 
though this report includes watersheds located in Illinois, the procedures may be applicable in 
neighboring States.  

(3)  Figure 4-24 has limits on storm rainfall of 10 inches and horizontal distance of 10 miles.  
Equation 6 on page 31 of the Huff and Neill reference represents one standard deviation and 
is included in this chapter.  One standard deviation is added and subtracted from the storm 
rainfall to represent the 70 percent probability.  Horizontal distance is used, so figure 4-24 
does not apply in mountainous areas or high desert country (see Section 630.0402E, 
“Orographic Influences”).  These examples show how the diagram can be used. 

(4)  The equation used to develop figure 4-24 is— 
𝑅𝑅𝑅𝑅 = 10(0.31logD + 0 .51P(0.5) – 0.961)   (equation 4-1) 
Where— 
RI = rainfall increment. 
D = distance from gage, miles. 
P = storm rainfall, inches. 
Log = base 10 logarithm. 
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(5)  Example 4-3—The storm rainfall depth at a gage is 3.5 inches.  What rainfall depth is likely 

to have occurred, with a probability of 0.7 (7 chances out of 10), at a point 5 miles away from 
the gage? 
(i)  Step 1.—Using figure 4-24 with the storm rainfall of 3.5 inches, and at the intersection of 

the 5-mile line, read a rainfall increment of 1.62 inches. 
(ii)  Step 2.—Compute the range of rainfall likely to have occurred seven chances out of ten.  

The limits are 3.5 + 1.62 = 5.12 inches, and 3.5 - 1.62 = 1.88 inches.  Therefore, where 
the gage has a measured storm rainfall of 3.5 inches, there is a probability of 0.7 (7 
chances out of 10) that the rainfall depth at a point 5 miles away from the gage is between 
1.88 and 5.12 inches. 

(6)  Example 4-4 
(i)  In example 4-4, figure 4-25 shows the variations to be expected when data from two 

gages are used to estimate the rainfall depth, and also when the gages are nearer or farther 
apart. 

(ii)  Rain gages B28R and G42R, on the Agricultural Research Service watershed in Webster 
County, NE, are 4.3 miles apart.  Given any storm rainfall of 0 to 4 inches depth at G42R, 
compute the range of difference to be expected if the rainfall at B28R is to be estimated 
from that at G42R using figure 4-20.  After plotting, the difference lines on figure 4-24, 
compare the computed range with the plotting of actual data points for the two gages. 
• Step 1.—Plot a line of equal values. 
• Step 2.—Select four values on the G42R depth scale.  These values will be used with 

figure 4-24 or equation 4-1.  For this example, the selected values are 0, 1, 2, and 4 
inches.  

• Step 3.—Using figure 4-24 or equation 4-1 with the distance of 4.3 miles and at the 
intersections of the 1-, 2-, and 4-inch rainfall lines read plus and minus differences of 

Figure 4-24:  Estimating the Possible Difference in Transposed Rainfall Amounts (Modified from Huff 
and Neill, 1957). 
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0.55, 0.90, and 1.80 inches, respectively.  Use equation 4-1 to calculate a value for 
zero inches of 0.17. 

• Step 4.—At 1 inch of rainfall depth at gage G42R plot points at rainfall depths of 
0.45 inches and 1.55 inches (1 in plus and minus 0.55 in).  At 2 inches of rainfall 
depth at gage G42R plot points at rainfall depth of 1.10 inches and 2.90 inches.  At 4 
inches of rainfall depth at gage G42R plot points at rainfall depth of 2.20 inches and 
5.80 inches.  At zero inches of depth at gate G42R plot the points plus and minus 
0.17 inches of depth for gage B28R. 

• Step 5.—Connect the four plus difference points and four minus difference points by 
lines as shown on figure 4-25.  The plot of the lower limit line is not shown below 
zero inches of rainfall.  The plotted points in the figure are for actual measurements 
at the gages.  One point is less than the lower difference line and 13 points are above 
the upper difference line.  Since there are 82 points, 17 percent of the points fall 
outside the 70 percent confidence interval.  This could be expected because there is 
generally more variation of storm rainfall when considering a limited number of 
events at two gages than when considering many events at many rain gages. 
 
Figure 4-25:  Storm Rainfall Gages 4.3 Miles Apart 

 
 

(iii)  One advantage in using figure 4-24 is that where a rainfall estimate is to be made for 
some distant point, the difference lines can be drawn in advance to give an idea of the 
value of the estimate. 

E.  Orographic Influences 

(1)  In hilly or mountainous terrain, the relief may be enough to affect the amount and distribution 
of precipitation so that measured storm rainfalls are influenced by physiographic variables, 
both local and distant.  Some of these are— 
(i)  Elevation or altitude. 
(ii)  Local slope. 
(iii)  Orientation or aspect of the slope. 
(iv)  Distance from the moisture source. 
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(v)  Topographic barriers to incoming moisture. 
(vi)  Degree of exposure, which is defined as the sum of those sectors of a circle of 20-mile 

radius centered at the station, containing no barrier 1,000 feet or more above station 
elevation, expressed in degrees of arc of circle (azimuth) (Hiatt 1953).  

(2)  In a typical watershed study, it is seldom possible to determine the influences of all these 
variables.  Orographic effects can be simulated in a hydrologic model by dividing the 
watershed into subareas related to elevation.  A different rainfall may be used for each 
subarea. 

(3)  Figures 4-26 and 4-27 show an example of the influences of altitude and topographic barriers 
on rainfall in a local example.  The rainfall amounts indicated by the points in figure 4-26 
were recorded during the storm of February 27 to March 4, 1938, in southern California, in 
the vicinity of the Santa Ana, San Bernardino, and San Gabriel mountains, which lie roughly 
parallel to the California coast.  The series of moisture-laden air masses associated with the 
storms swept in from the Pacific Ocean to encounter the mountain ranges at almost right 
angles to their path.  The mountains acted as obstructions, thrusting the warm, moist air 
upward into colder air, and the resultant rapid condensation produced excessively heavy 
rainfall, particularly on the coastal side of the ranges.  The desert side of the ranges (figure 4-
27) had significantly less rainfall.  Much of the moisture had already been pulled out of the 
air mass by the time it reached the desert side of the ranges.  As the air mass warmed moving 
down the desert side of the mountain slopes, it no longer had a ready moisture source and 
thus became drier.  

 

Figure 4-26:  Orographic Influences on Rainfall (Source:  USGS 1942) 
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630.0403  Temporal Distribution of Rainfall 

A.  Introduction 

(1)  Section 630.0401, “Sources of Data,” describes various sources of precipitation-frequency 
data.  These data were derived using various technical methods, for various purposes or 
objectives, over a period of many years.  Using these data for hydrologic modeling as 
described in 210-NEH-630-16 and 210-NEH-630-21, requires definition of the temporal 
distribution of the rainfall, which is how the precipitation is distributed over time throughout 
a storm of a particular duration.  For example, a 24-hour rainfall distribution may be defined 
at a time interval of 0.1 hour by the cumulative distribution of rainfall, starting at the 
beginning of the storm and ending at the 24-hour rainfall value. 

(2)  Rainfall distributions used for design of engineering projects are different from actual storms 
in several ways.  One is that design rainfall distributions used by NRCS are generally 24 
hours in duration.  Actual storms have any duration from minutes up to days.  Another major 
difference is the distribution of rainfall throughout the duration of the storm.  The actual 
storm has variable rainfall during each increment and could even have increments of very 
high intensity rainfall, very low intensity rainfall, or both.  The design rainfall distribution has 
an intensity starting low and increasing to a maximum value then gradually reducing in 
intensity approaching the end of the storm.  A third major difference between actual storms 
and design storms is that even though the actual event may have a 100-year 24-hour total 
rainfall, the actual storm may include the 10-year 3-hour rainfall and the 5-year 5-minute 
rainfall (or any combination of other durations and return periods).  The design rainfall 
distribution is developed to have the 100-year 24-hour rainfall, the 100-year 12-hour rainfall, 
etc., down to the 100-year 5-minute rainfall imbedded in a single storm.  This paragraph is 
summarized in figure 4-28. 

  

Figure 4-27:  Points Denoting Gage Locations for Rain Gages in Figure 4-22. 
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Figure 4-28:  Differences Between Design Storms and Actual Storms 
Storm 
characteristic 

Design storms Actual storms 

Storm duration 24-hour duration Any duration from minutes to days 

Temporal rainfall 
distribution 

Smoothly increasing and 
decreasing rainfall intensity 

Irregular rainfall pattern with respect to 
time, possibly including intervals of no 
rainfall 

Intensity/duration 
relationship 

Based on intensity/duration data 
for a single return period such as 
25-year 

Generally, include intensity/duration data 
for different return periods 

 
(3)  Development of historical and design storm distributions are described and application 

guidelines and methods presented.  The history of the standard NRCS storm distributions are 
also described.  Methods for developing rainfall distributions for PMP are recommended in 
the various PMP documents listed in section 630.0401D.  However, the concepts used in 
developing rainfall distributions in this chapter may be applied to develop a PMP rainfall 
distribution.  

(4)  The standard NRCS Type I and Type II synthetic rainfall distributions, used for design and 
planning of NRCS water-related projects, are based on Technical Paper (TP) 40 (Weather 
Bureau 1961a) rainfall frequency maps.  The only surviving documentation concerning 
development of the Type I and Type II rainfall distributions is TP-149 (SCS 1973).  The 
standard NRCS Type IA used in the Pacific Northwest was developed based on major storm 
cumulative rainfall distributions (Woodward 1975).  The NRCS Type III distribution 
(Cronshey and Woodward 1989) is based on NWS Hydro-35 (NWS 1977) and TP-40 
(Weather Bureau 1961a).  Each of these four rainfall distributions has an intense rainfall 
period somewhere near the middle and lesser rainfall intensities at the beginning and end of 
the storm (figure 4-29).  These and other standard NRCS rainfall distributions are listed and 
described in the WinTR-20 user documentation.  The rainfall distribution tables may also be 
requested as WinTR-20 computer program output, which will place the tables in a file format 
for export to other software such as a spreadsheet or for use in other hydrologic models. 

  

Figure 4-29:  Plot of Types I, IA, II, and III Synthetic Rainfall Distributions 
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(5)  The Type I, IA, II, and III distributions have been applied to large geographic regions.  A 
map is included in TR-55 (SCS, 1986).  For instance, the Type II distribution has been 
applied to a large part of the central continental Unites States. 

 (6)  Figure 4-30 shows the current status of rainfall distribution regions within the 48 
conterminous United States.  NOAA Atlas 14 is complete for the southwest States, 
California, Ohio Valley and adjacent States, the Midwest, the southeast States, and the 
northeast States.  NOAA Atlas 14 is also complete for Hawaii, Puerto Rico, the U.S. Virgin 
Islands, selected Pacific islands, and Alaska, although these are not shown in figure 4-30.  
Within the States where NOAA Atlas 14 is complete, the WNTSC National Water Quality 
and Quantity Team developed updated rainfall distributions for individual States and groups 
of States.  Documentation of these distributions is available at the NRCS WNTSC National 
Water Quality and Quantity Team website http://go.usa.gov/rXYw (NRCS 2011) under 
“Technical Information.”  Documentation on use of NOAA Atlas 14 data and rainfall 
distributions in each individual State covered by NOAA Atlas 14 is available at the NRCS 
WNTSC National Water Quality and Quantity Team website under the link to the WinTR-20 
model.  Section 630.0408 describes development of regional rainfall distributions based on 
GIS data.  Regional rainfall distributions were developed for California, Nevada, Midwest 
States, Southeast States, Ohio Valley and neighboring States, and New York and New 
England States. 

 

(7)  As the rest of the States are covered in future volumes of NOAA Atlas 14, figure 4-30 will be 
revised.  Montana is not assigned a single distribution because the State has a procedure to 
select the rainfall distribution based on the ratio of 6- to 24-hour rainfall depths (SCS 1990).  
Any rainfall distribution developed prior to release of volumes of NOAA Atlas 14 should not 
be used without a specific evaluation of imbedded rainfall ratios.  An important feature of a 
NRCS synthetic design rainfall distribution is the ratio of rain falling in a shorter duration to 
the total storm rainfall.  For example, figure 4-31 shows that in a Type II rainfall distribution, 
45.4 percent of the 24-hour storm rainfall occurs in 1 hour.  In areas covered by NOAA Atlas 
14, this ratio is generally different and highly site-specific.  The same concept is true for other 

Figure 4-30:  Map of States with Updated Synthetic Rainfall Distributions as of January 2016. 

http://go.usa.gov/rXYw
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durations such as 5, 10, 15, and 30 minutes, 2 hours, etc.  To use a Type II or other legacy 
rainfall distribution with the updated NOAA Atlas 14 data could introduce errors by 
application of inaccurate rainfall intensities during the storm. 

(8)  Little documentation is available that describes the development of the Type II and other 
legacy rainfall distributions.  Study of what is available leads to the conclusion that their use 
be discontinued in areas covered by NOAA Atlas 14 data.  The Type II was assigned as the 
design storm distribution for much of the 48 conterminous United States.  Using maps 
contained in TP-40, rainfall ratios for durations from 30 minutes to 12 hours divided by the 
24-hour rainfall reveal significant variation from the ratios imbedded in the Type II storm 
distribution.  In SCS Technical Paper (TP) 149 (SCS 1973), there are several locations 
(Alabama, Puerto Rico, Nebraska, and Utah) where the rainfall versus duration is plotted.  
These plots show differences at a station over 0.5 inches when compared to the Type II curve.  
When these legacy rainfall distributions were developed, they were developed using the best 
data, technology, and engineering judgment available at the time.  With current data of 
improved quantity and quality, geographic information systems, and computer capabilities, a 
higher standard may be set with respect to developing and using updated rainfall 
distributions. 

(9)  An important characteristic of NRCS synthetic rainfall distributions is that the maximum 
rainfalls for all durations from 5 minutes to 24 hours are represented accurately.  The primary 
assumption made in the development of the rainfall distribution is that the rainfall values for 
all durations for a single return period occur within one 24-hour period.  For example, the 25-
year 5-minute, 25-year 10-minute, 25-year 15-minute, and up to the 25-year 24-hour rainfall 
occurs within the same design storm and are centrally nested within each greater storm 
duration listed. 

Figure 4-31:  Ratios to 24-hour Rainfall for the Type II Distribution 
Duration Ratio to 24-hour 

rainfall 
5 minutes 0.114 
10 minutes 0.201 
15 minutes 0.270 
30 minutes 0.380 
1 hour 0.454 
2 hours 0.538 
3 hours 0.595 
6 hours 0.707 
12 hours 0.841 
24 hours 1.00 

B.  Precipitation-Frequency Data Ratio Analyses 

(1)  The foundation of rainfall distributions as used throughout the history of NRCS is the set of 
ratios of the shorter durations to the 24-hour rainfall.  The ratios of 5-minute through 12-hour 
rainfall to the 24-hour rainfall imbedded in the Type II distribution are included in figure 4-31 
as an example.  NOAA Atlas 14 data for the desert southwest (NOAA Atlas 14, Volume 1) 
and Ohio Valley and neighboring States (NOAA Atlas 14, Volume 2) were analyzed with 
respect to ratios of shorter durations to the 24-hour rainfall values at many point locations 
(Merkel et al. 2006).  

(2)  Section 630.0405 contains an example which compares the Type II distribution with the 
original TP-40 and Hydro-35 rainfall values.  The ratios of shorter duration to the 24-hour 
rainfall developed with data from TP-40 and Hydro-35 are compared with ratios from the 
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standard Type II distribution, which has been used there in the past.  Columbus, OH, is the 
location that was evaluated. 

(3)  The ratios for each duration to the 24-hour rainfall that are imbedded in the standard Type II 
rainfall distribution as shown in figure 4-31.  Variability of ratios is also evident in rainfall 
distributions based on the NOAA Atlas 14 data.  The engineer must determine how much 
difference between the site-specific distribution and the regional rainfall distribution is 
acceptable for each specific project. 

(4)  To summarize the results of the analyses, the ratios of shorter duration to the 24-hour rainfall 
varied both spatially and by return period enough to conclude that the ratios imbedded in the 
standard NRCS rainfall distributions (Types I, IA, II, and III) are not consistent with ratios 
developed from NOAA Atlas 14 rainfall values.  Rainfall distributions, which cover large 
geographic regions, may have large variation of ratios that could lead to overestimation or 
underestimation of peak discharge when used with a hydrologic model such as WinTR-20 or 
WinTR-55.  Overestimation and underestimation refers to the difference between using the 
regional rainfall distribution and the site-specific rainfall distribution based on the return 
period being analyzed.  However, a properly designed rainfall distribution, such as 
demonstrated in section 630.0408 of this chapter, may be feasible if ratio limits are set and 
tests are made to ensure the maximum range in peak discharge values is within an appropriate 
tolerance. 

(5)  To illustrate the variation of rainfall distribution with return period and sensitivity of peak 
discharge, the Wilmington Airport, NC, station was selected.  The partial duration 
precipitation values were downloaded and the ratios of 5-minute 24-hour through 12-hour 24-
hour ratios were computed and plotted in figure 4-32.  The ratios for the 1- through 500-year 
return periods are compared with the ratios imbedded within the standard Types I, II, and III 
rainfall distributions. 

(6)  The figure shows that the Type II ratios are an approximate upper limit, which falls close to 
the 1-year ratios.  The Type III ratios fall in the mid-range of the return periods (25- and 50-
year).  The Type I ratios are an approximate lower limit for the 500-year ratios up to about 
30-minute duration.  The ratios show that it may be inappropriate to use a single rainfall 
distribution for all return periods.  However, depending on the project purpose and 
complexity, using a single rainfall distribution to represent a design storm may be 
appropriate.  

(7)  The ratios of shorter duration to the 24-hour duration may have a significant impact on peak 
discharges of hydrographs generated using the particular rainfall distribution.  Considering 
the storms from 1-year through 100-years, the ratios for the 10-year storm shown in figure 4-
32 represent the average for this location.  For this example, rainfall distributions for each 
return period were developed based on ratios of the 5-minute to 24-hour through 12-hour to 
24-hour ratios.  The expected difference in peak discharge based on an individual rainfall 
distribution for each return period versus the average for all return periods from 1-year 
through 100-years varies by location and by runoff curve number and time of concentration.  
WinTR-20 was run for a runoff curve number of 75 and times of concentration (Tc) of 0.5 
and 1.0 hour.  A drainage area of 0.5 square mile was used.  However, when only interested 
in percentage difference of peak discharge, the drainage area is immaterial.  The percent 
differences are shown in figure 4-33. 

(8)  Positive differences in figure 4-33 indicate the peak discharge is greater with the individual 
return period rainfall distribution when compared to the average rainfall distribution.  
Negative differences indicate the peak discharge is less with the individual return period 
rainfall distribution when compared to the average rainfall distribution.  The results in figure 
4-33 show what is expected when considering the plot of ratios in figure 4-32.  Ratios for the 
1-year, 2-year and 5-year storms are greater than ratios for the 10-year return period and the 
higher peak discharges for those storms reflect that. 
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(9)  Wilmington, NC, is a somewhat extreme example of ratio variation by return period.  Many 
other locations have a narrower range of variation.  However, if this variation is evident 
anywhere, it leads to the conclusion that new rainfall distributions are needed to replace the 
legacy rainfall distribution types. 

 

 
Figure 4-33:  Percent Difference in Peak Discharge Using Individual Storm Rainfall Distributions 
Versus an Average Rainfall Distribution for Wilmington, NC 

Storm 
return 
period, 
years 

Percent 
difference 
Tc = 0.5 

hour 

Percent 
difference 
Tc = 1.0 

hour 
1 14.5 9.8 
2 13.0 9.4 
5 5.2 4.3 

10 0.0 0.0 
25 –8.3 –6.2 
50 –14.6 –11.6 

100 –20.0 –16.2 
 

C.  Development of Synthetic Rainfall Distributions 

(1)  Merkel et al. (Merkel 2006 and Merkel et al. 2015) developed a procedure to derive rainfall 
distributions to cover the wide range of climatic conditions from tropical to arctic that occur 
in the United States. 

(2)  The method used to construct the 24-hour rainfall distribution ensures that the maximum 
rainfall of any duration less than 24 hours is included in the distribution.  It is one of the 

Figure 4-32:  Ratios of 5-Minute 24-Hour through 12-Hour 24-Hour Ratios for 
Different Distributions, Data for Wilmington Airport, NC 
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principles of hydrology that the peak discharge for a watershed is determined primarily by 
rain falling in a duration, which equals the time of concentration (210-NEH-630-15 (NRCS 
2010b)).  The 24-hour rainfall distribution has the maximum 5-minute rainfall occurring from 
12 to 12.1 hours.  The maximum 10-minute rainfall is between 11.9 and 12.1 hours, and 
includes the maximum 5-minute rainfall, and so on.  Since the rainfall distribution is 
developed at a 0.1-hour (6-mins.) time interval, the values at 0.1-hour time interval are 
interpolated from the 5, 10, 15 and 30-minute rainfall values.  In this way, a single rainfall 
distribution for 24 hours may be used for any watershed with time of concentration less than 
24 hours. 

(3)  In many investigations of precipitation-frequency data from NOAA Atlas 14 a number of 
geographic regions have a relationship of precipitation intensity versus duration, which is not 
smooth.  When the precipitation intensity-duration relationship is not smooth, the resulting 
rainfall distribution is not smooth.  Section 630.0406 describes these situations and how the 
data may be smoothed to generate a smooth rainfall distribution.  Software associated with 
WinTR-20 automates this data smoothing option. 

(4)  In figure 4-34, the ratio of 3-hour to 24-hour rainfall is 0.6.  The 3-hour duration is centered 
on 12 hours, so the 3-hour period will start at 10.5 hours and end at 13.5 hours.  The ratio 
value of 0.6 is centered at 0.5 so the cumulative rain ratio for the 3-hour duration begins at 
0.2 and ends at 0.8.  The ratio of 6-hour to 24-hour rainfall is 0.7.  The 6-hour duration is 
centered on 12 hours, so the 6-hour period will start at 9 hours and end at 15 hours.  The ratio 
value of 0.7 is centered at 0.5 so the cumulative rain ratio for the 6-hour duration begins at 
0.15 and ends at 0.85.  All durations from 1 hour to 12 hours are treated similarly as the 3-
hour and 6-hour durations explained above.  Since the rainfall table is developed at a 0.1-hour 
time interval, cumulative rainfall ratios from 11.6 hours to 12.4 hours are interpolated based 
on ratios of 5-minute, 10-minute, 15-minute, and 30-minute to 24-hour rainfall.  A curve is fit 
to pass through the ratio points developed from the procedure described above to make a 
smooth cumulative rainfall distribution, which gradually increases in rainfall intensity from 
zero to 12 hours and gradually decreases in rainfall intensity from 12 hours to 24 hours.  
Section 630.0407 describes the procedure in detail. 
 

 

Figure 4-34:  Construction of Rainfall Distribution from Precipitation versus 
Duration Data 
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(5) Since the 24-hour design rainfall distribution is built to include the maximum rainfall 
distribution for any shorter duration, the rainfall distribution for any duration may be 
extracted from it.  An example follows. 

(6)  Example 4-5.—Extract a 6-hour rainfall distribution from the 24-hour rainfall distribution at 
a location in Bradford County, FL, using data from NOAA Atlas 14.  The table of 24-hour 
cumulative rainfalls at an increment of 0.5 hour is in figure 4-35, columns 1 and 2.  A time 
increment of 0.5 hour is used to shorten the example and still demonstrate the concepts.  The 
maximum 6 hours of the 24-hour rainfall distribution is from 12 hours plus and minus 3 hours 
or from 9 to 15 hours.  The cumulative value at 9 hours is 0.1108 and at 15 hours is 0.8892 
and the difference is 0.7784.  Values in column 3 are values in column 2 with 0.1108 (value 
at 9 hours) subtracted from each.  Values in column 4 are the cumulative values of time for 
the 6-hour rainfall distribution (beginning at 0.0 and ending at 6.0 hours).  The values in 
column 5 are the values in column 3 divided by 0.7784 (difference between 9 and 15 hours).  
Thus, columns 4 and 5 represent the 6-hour rainfall distribution.  The 6-hour rainfall 
distribution starts at a cumulative value of 0.0 and ends at a cumulative value of 1.0.  

(7)  Why does NRCS use primarily the 24-hour rainfall distribution? When NRCS originally 
developed hydrologic procedures in the 1950s, most rain gages recorded daily (24-hour) 
rainfall.  Few recorded hourly and sub hourly values and there was much more confidence in 
the daily records and associated rainfall frequency analyses.  Hourly and sub hourly 
measurements were used to distribute the rainfall within the 24-hour duration storm.  With 
only two original rainfall distributions, the Type I and Type II (SCS-TP-149), tables and 
graphs for hydrologic analyses could be developed easily.  Users of the hydrologic 
procedures needed only a 24-hour rainfall value along with basic watershed data to complete 
a hydrologic analysis. 

(8)  Rainfall and runoff data used to develop runoff curve numbers are a combination of storm 
event rainfall and runoff and daily rainfall and runoff.  The word daily is interpreted as being 
24 hours.  In NRCS hydrologic procedures, the curve number is applied to estimate the 24-
hour runoff volume based on the 24-hour rainfall.  The 24-hour rainfall distribution includes 
the maximum rainfall distribution for all shorter durations.  By using rainfall values for all 
durations from 5 minutes to 24 hours to develop the rainfall distribution and nesting the 
durations, a maximized rainfall distribution results.  This will ensure that the maximum 
rainfall intensity is applied to a watershed with any time of concentration less than 24 hours.  
In modernizing NRCS hydrologic procedures, the number of rainfall distributions has 
increased greatly, though standard use of the 24-hour duration is continued.  Development of 
the rainfall distribution is automated in WinTR-20, allowing for use of both regional and site-
specific rainfall distributions 
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Figure 4-35:  Six-Hour Rainfall Distribution Extracted from a 24-Hour Rainfall Distribution 
Time 
(hr) 

Cumulative 24-hr 
rainfall ratio 

Unadjusted 
cumulative 6-hr 
rainfall ratio 

6-hr distribution 
time (hr) 

6-hr distribution 
cumulative rainfall 
ratio 

(1) (2) (3) (4) (5) 
0 0.0000 

   

0.5 0.0031 
   

1 0.0064 
   

1.5 0.0100 
   

2 0.0139 
   

2.5 0.0180 
   

3 0.0224 
   

3.5 0.0271 
   

4 0.0320 
   

4.5 0.0372 
   

5 0.0427 
   

5.5 0.0484 
   

6 0.0544 
   

6.5 0.0612 
   

7 0.0690 
   

7.5 0.0778 
   

8 0.0878 
   

8.5 0.0988 
   

9 0.1108 0.0000 0 0.0000 
9.5 0.1259 0.0151 0.5 0.0194 
10 0.1454 0.0346 1 0.0445 

10.5 0.1693 0.0585 1.5 0.0751 
11 0.2057 0.0949 2 0.1219 

11.5 0.2712 0.1604 2.5 0.2061 
12 0.4763 0.3655 3 0.4696 

12.5 0.7288 0.6180 3.5 0.7939 
13 0.7943 0.6835 4 0.8781 

13.5 0.8307 0.7199 4.5 0.9249 
14 0.8546 0.7438 5 0.9555 

14.5 0.8741 0.7633 5.5 0.9806 
15 0.8892 0.7784 6 1.0000 

15.5 0.9013    
16 0.9122    

16.5 0.9222    
17 0.9310    

17.5 0.9388    
18 0.9456    

18.5 0.9516    
19 0.9573    

19.5 0.9628    
20 0.9680    

20.5 0.9729    
21 0.9776    

21.5 0.9820    
22 0.9861    

22.5 0.9900    
23 0.9936    

23.5 0.9969    
24 1.0000    
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D.  Development of a Rainfall Distribution for a Historical Storm 

(1)  One purpose for developing a rainfall distribution for a historical storm is to run a hydrologic 
model such as WinTR-20 or WinTR-55 for a watershed to validate the model data or conduct 
a storm assessment comparing the model results to actual flood data such as a peak discharge, 
flood hydrograph, or high-water marks.  This example uses the storm of August 30, 2005, at 
Columbus, OH.  From records of the National Weather Service, the actual time and hourly 
precipitation data are shown in columns 1 and 3 of figure 4-36. 

(2)  The hourly values are accumulated from the beginning to the end of the storm in column 4 of 
figure 4-36.  The ratios of the accumulated precipitation to the total storm precipitation are 
shown in column 5.  For comparison, the ratios for the Type II storm distribution are shown 
in column 6.  The cumulative rain ratios for the actual storm event and the Type II are shown 
in figure 4-37.  The storm of August 30, 2005, has the same general shape as the Type II 
distribution, starting with low rainfall intensity at the beginning of the storm, higher intensity 
in the middle and lower intensity near the end.  Actual storm distributions, which may be 
front-loaded or end-loaded, may plot anywhere within a graph similar to figure 4-37.  Even 
though the Type II is a hypothetical storm, actual storms may approach the Type II storm 
distribution with respect to general shape and maximum rainfall intensity. 

 
Figure 4- 36:  Hourly Rainfall Data and Distribution at Columbus, OH, August 30, 2005 

Actual time, 
hours 

Time from 
beginning of 
storm, hours 

Hourly 
precipitation, 
inches 

Accumulated 
precipitation, 
inches 

Accumulated 
ratio 
(col. 3/col. 4) 

Type II 
storm ratio 

(1) (2) (3) (4) (5) (6) 
4 a.m. 0 0 0 0 0 
5 1 0.01 0.01 0.004 0.011 
6 2 0.01 0.02 0.007 0.022 
7 3 0.02 0.04 0.015 0.035 
8 4 0.03 0.07 0.026 0.048 
9 5 0.01 0.08 0.030 0.063 
10 6 0.03 0.11 0.041 0.080 
11 7 0.04 0.15 0.056 0.099 
12 Noon 8 0.07 0.22 0.082 0.120 
1 9 0.0 0.22 0.082 0.147 
2 10 0.02 0.24 0.090 0.181 
3 11 0.12 0.36 0.135 0.235 
4 12 0.19 0.55 0.206 0.663 
5 13 0.42 0.97 0.363 0.772 
6 14 0.31 1.28 0.479 0.820 
7 15 0.35 1.63 0.610 0.854 
8 16 0.21 1.84 0.689 0.880 
9 17 0.19 2.03 0.760 0.902 
10 18 0.14 2.17 0.813 0.921 
11 19 0.15 2.32 0.869 0.938 
12 
Midnight 

20 0.09 2.41 0.903 0.952 

1 21 0.06 2.47 0.925 0.965 
2 22 0.07 2.54 0.951 0.977 
3 23 0.06 2.6 0.974 0.989 
4 24 0.07 2.67 1.000 1.000 
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630.0404  Uses of Precipitation Depth and Distribution 

A.  Average storm rainfall is sometimes used in hydrologic models, such as WinTR-20 and WinTR-
55, to estimate the peak discharge for a particular storm event.  Another possible application is to use 
average watershed rainfall along with measured runoff volume to determine a calibrated watershed 
runoff curve number for a particular storm event.  An estimation of mean annual precipitation may be 
needed for other purposes such as application of USGS peak discharge equations when the mean 
annual precipitation is a regression variable or relating the mean annual precipitation value to other 
hydrologic data such as volume of runoff. 

B.  The WinTR-20 hydrologic model could be used to analyze the effects of the 25-year 24-hour and 
other storms on a watershed.  The EFH-2 program has the limitation of using only a single watershed 
and WinTR-55, though it may analyze a watershed with subareas, has the limitation of using a 
uniform rainfall over the entire watershed. 

C.  An actual storm distribution may be used in WinTR-20 or WinTR-55 to estimate peak discharges 
and hydrographs for a watershed impacted by a particular storm event in order to assess damages as a 
result of this storm or to calibrate other data.  Calibration involves verifying the proper assignment of 
the various hydrologic model input parameters such as watershed area, runoff curve number, time of 
concentration, and dimensionless unit hydrograph peak rate factor.  Once a hydrologic model is 
calibrated, hypothetical, synthetic, and design rainfall depths and distributions may be analyzed with 
the hydrologic model to estimate impacts of flood events.  This can be done with confidence based on 
comparing the hydrologic model results to actual rainfall and runoff gages for multiple storms. 

D.  NRCS models such as WinTR-20, WinTR-55, SITES, and EFH-2 are designed to use 
standardized rainfall distributions.  A custom rainfall distribution may be used instead of one of the 
standard rainfall distributions in WinTR-20, WinTR-55, and SITES.  This custom rainfall distribution 

Figure 4-37:  Construction of Rainfall Distribution from Precipitation versus 
Duration Data 
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may be based on an historical or actual storm event or based on NOAA Atlas 14 data at the project 
location. 

630.0405  Comparing Precipitation-Frequency Data and Distribution 

A.  This section explains and shows, through tables and calculations, how to compare rainfall 
magnitude and rainfall distribution from an older rainfall atlas - such as Technical Paper No. 40 (TP-
40) (Weather Bureau 1961a) or NOAA Atlas 2 (NWS 1973) - with data from NOAA Atlas 14 (NWS 
2005) for a particular location. 

B.  This example, using the data for Columbus, OH, illustrates an example of the comparison between 
old and new rainfall-frequency data and rainfall distributions. 

C.  Comparing Rainfall Distribution Based on NWS Hydro 35 and TP–40 to the NRCS Type II 

(1)  Figure 4-38 lists the partial duration precipitation values in inches for Columbus, OH, derived 
from maps in NOAA Technical Memorandum NWS Hydro 35 (NWS 1977) by frequency.  
NWS Hydro 35 includes only data from 5 through 60 minutes.  

(2)  Figure 4-39 lists the partial duration precipitation values in inches for Columbus, OH, derived 
from maps in TP–40 (Weather Bureau 1961a) by frequency.  TP–40 includes data only from 
0.5 through 24 hours. 

(3)  Ratios of shorter duration to the 24-hour rainfall are shown in figure 4-40.  For example, the 
ratio for the 10-year, 1-hour rainfall is 1.8 inches divided by 3.8 inches (both values from 
figure 4-39) or 0.474. 

(4)  There is overlap of data between figures 4-38 and 4-39 for 30 and 60 minutes (0.5 and 1 hr).  
TP–40 values for 0.5 and 1 hour are used to compute ratios in figure 4-40 because the plot of 
ratio versus duration is relatively smooth as shown in figure 4-41.  If NWS Hydro 35 ratios 
had been used, there would be a sharp change of slope in the curves between 1 and 2 hours. 

(5)  Figure 4-41 is a plot of the values in figure 4-40.  The plotted curves show significant 
variation of ratios among return periods, which are equal or greater than the ratios of the 
NRCS Type II rainfall distribution. 

(6)  The NWS Hydro 35 ratio is plotted for 5 to 15 minutes.  The TP–40 ratio is plotted for 30-
minute to 24-hour durations. 

(7)  Just as a rainfall distribution may be built based on ratios of 5-minute to 24-hour rainfall 
through 12-hour to 24-hour rainfall, ratios of these shorter durations to the 24-hour may be 
extracted from an existing rainfall distribution.  Column 3 of figure 4-42 includes ratios of 
shorter duration to the 24-hour total extracted from the NRCS Type II rainfall distribution. 

(8)  These analyses compare the NRCS Type II distribution to Hydro–35 and TP–40 data.  A 
rainfall distribution developed from Hydro–35 and TP–40 for Columbus, OH, would produce 
higher peak discharges than the NRCS Type II because the ratios for durations from 5 
minutes to 12 hours are higher for Hydro–35 and TP–40 data.  Based on the ratios in figure 4-
42, the percentage increase in peak discharge differs for the various return periods. 
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Figure 4-38:  Precipitation – Frequency for Columbus, OH, Hydro 35 

Duration 
(min) 

2-yr 
(in) 

5-yr 
(in) 

10-yr 
(in) 

25-yr 
(in) 

50-yr 
(in) 

100-yr 
(in) 

5 0.43 0.49 0.55 0.63 0.69 0.75 
10 0.66 0.79 0.89 1.03 1.15 1.26 
15 0.82 1.00 1.13 1.32 1.46 1.61 
30 1.06 1.33 1.52 1.79 2.01 2.22 
60 1.30 1.67 1.92 2.29 2.57 2.85 

 
 
Figure 4-39:  Precipitation – Frequency for Columbus, OH, TP-40 

Duration 
(hr) 

2-yr 
(in) 

5-yr 
(in) 

10-yr 
(in) 

25-yr 
(in) 

50-yr 
(in) 

100-yr 
(in) 

0.5 1.02 1.28 1.48 1.7 1.9 2.1 
1 1.26 1.6 1.8 2.15 2.4 2.7 
2 1.52 1.9 2.25 2.5 2.85 3.1 
3 1.65 2 2.4 2.8 3 3.4 
6 1.95 2.45 2.9 3.25 3.7 3.9 
12 2.35 2.9 3.35 3.75 4 4.75 
24 2.6 3.3 3.8 4.3 4.7 5 

 
 
Figure 4-40:  Ratio of Shorter Duration to 24-hour Precipitation for Columbus, OH 1/ (Hydro 35 and 
TP-40) 

Duration 
(minutes or hours) 2-year 5-year 10-year 25-year 50-year 100-year 

5-min Hydro 35 1/ 0.165 0.148 0.145 0.147 0.147 0.150 
10-min Hydro 35 1/ 0.254 0.239 0.234 0.240 0.245 0.252 
15-min Hydro 35 1/ 0.315 0.303 0.297 0.307 0.311 0.322 
30-min TP-40 0.392 0.388 0.389 0.395 0.404 0.420 
1-hr TP-40 0.585 0.579 0.592 0.581 0.606 0.620 
3-hr TP-40 0.635 0.606 0.632 0.651 0.638 0.680 
6-hr TP-40 0.750 0.742 0.763 0.756 0.787 0.780 
12-hr TP-40 0.904 0.879 0.882 0.872 0.851 0.950 
24-hr TP-40 1.000 1.000 1.000 1.000 1.000 1.000 

1/ Ratios equal 5 to 15-minute values from figure 4-38 over 24-hour values from figure 4-39 and 30-min to 24-
hour values from figure 4-39 over 24-hour values from figure 4-39. 
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Figure 4-42:  Comparison of Ratios for Columbus, OH (Hydro 35 and TP-40) and the Type II Ratio 
for all Durations 
Duration 
(minutes or hours) 

Columbus, OH, 
average ratio 1/ 

Type II ratio Average percent 
difference in ratio 2/ 

Largest percent 
difference for any 
return period 3/ 

(1) (2) (3) (4) (5) 
5-min Hydro 35 1/ 0.150 0.114 31.58 44.74 
10-min Hydro 35 1/ 0.244 0.201 21.39 26.37 
15-min Hydro 35 1/ 0.309 0.270 14.44 19.26 
30-min TP-40 0.398 0.380 4.74 10.53 
1-hr TP-40 0.499 0.454 9.91 18.9 
2-hr TP-40 0.593 0.538 10.22 15.24 
3-hr TP-40 0.640 0.595 7.56 14.29 
6-hr TP-40 0.763 0.707 7.92 11.32 
12-hr TP-40 0.890 0.841 5.83 12.96 
24-hr TP-40 1.000 1.000 1.000 1.000 

1/  col. 2 = average of all frequencies for each duration, figure 4-40 

2/  col. 4 = [(col. 2 – col. 3) / col.3] x 100 

3/  col. 5 = [(largest ratio for duration in figure 4-40 - col. 3) / col. 3] x 100 

D.  Comparing Rainfall Distribution Based on NOAA Atlas 14 to the NRCS Type II 

(1)  Figure 4-43 shows partial duration data downloaded from the NOAA-NWS website for 
NOAA Atlas 14 for Columbus, OH, at the WSO Airport (latitude 39.9914 N and longitude 
82.8808 W).  Partial duration data were downloaded because NRCS typically uses that for 
design of engineering projects. 

(2)  The 90-percent confidence limits are shown in parentheses for each duration and frequency in 
the table. 

(3)  The probability is 90 percent that the actual value will fall within that range. 

Figure 4-41:  Plot of Ratios of Shorter Duration to the 24-Hour Precipitation for 
Columbus, OH 
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(4)  Figure 4-44 lists ratios of shorter duration to the 24-hour duration rainfall based on values 
from figure 4-43.  For example, the ratio of 2-year, 5-minute to 2-year, 24-hour rainfall is 
0.421/2.62 or 0.161. 

(5)  Ratios for 5 through 30 minutes decrease from the 2- to 100-year values.  Ratios for the 1- 
through 3-hour durations are relatively constant.  Ratios for 6- and 12-hour durations increase 
from the 2- to 100-year values.  This leads to slightly different rainfall distributions for each 
of the return periods. 

(6)  Figure 4-45 plots the ratios.  These analyses compare the NRCS Type II distribution to 
NOAA Atlas 14 data.  A rainfall distribution developed from NOAA Atlas 14 data for 
Columbus, OH, would produce higher peak discharges than the NRCS Type II because the 
ratios for durations from 5 minutes to 12 hours are higher for NOAA Atlas 14 data.  Based on 
the ratios in figure 4-46, the percentage increase in peak discharge differs for the various 
return periods and time of concentration. 

 

 
Figure 4-44:  Ratio of Shorter Duration to 24-hour Precipitation for Columbus, OH (Based on NOAA Atlas 14 
Data) 

Duration 2-yr 5-yr 10-yr 25-yr 50-yr 100-yr 
5-min 0.161 0.156 0.153 0.147 0.142 0.138 

10-min 0.251 0.243 0.236 0.225 0.217 0.207 
15-min 0.306 0.298 0.290 0.277 0.266 0.259 
30-min 0.412 0.409 0.402 0.392 0.382 0.372 

1-hr 0.504 0.511 0.512 0.509 0.503 0.498 
2-hr 0.588 0.598 0.601 0.601 0.600 0.601 
3-hr 0.622 0.632 0.635 0.640 0.638 0.640 
6-hr 0.740 0.746 0.751 0.757 0.761 0.768 

12-hr 0.863 0.867 0.871 0.878 0.883 0.892 
24-hr 1.000 1.000 1.000 1.000 1.000 1.000 

 

Figure 4-43:  NOAA Atlas 14 Partial Duration Series (PDS) Precipitation-Frequency Data for Columbus, OH 
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Figure 4-46:  Comparison of Ratios for Columbus, OH (NOAA Atlas 14) and the Type II Ratio for 
All Durations 

Duration Columbus, OH, 
average ratio of 
NOAA Atlas 14 
data 1/ 

Type II ratio Average percent 
difference in ratio2/ 

Largest percent 
difference for 
any return 
period3/ 

(1) (2) (3) (4) (5) 
5-min 0.149 0.114 31.02 40.95 
10-min 0.230 0.201 14.25 24.76 
15-min 0.283 0.270 4.70 13.51 
30-min 0.395 0.380 3.90 7.54 
1-hour 0.506 0.454 11.56 12.86 
2-hour 0.598 0.538 11.17 11.72 
3-hour 0.634 0.595 6.64 7.57 
6-hour 0.754 0.707 6.63 8.59 

12-hour 0.876 0.841 4.12 6.05 
24-hour 1.000 1.000 0.00 0.00 

1/  col. 2 = average of all frequencies for each duration 
2/  col. 4 = [(col. 2 – col. 3) / col. 3] x 100 
3/  col. 5 = [(largest ratio for duration in figure 4-44 – col. 3) / col. 3] x 100 

E.  Comparing Rainfall Data of NOAA Atlas 14 with NWS Hydro 35 and TP–40  

(1)  Figure 4-47 shows the comparison of NOAA Atlas 14 data and NWS Hydro 35 and TP–40 
for Columbus OH. 

(2)  Figure 4-50 uses values of NWS Hydro 35 for the 5 through 15 minutes of figure 4-38 and 
TP–40 rainfalls for 30 through 24 hours from figure 4-39, respectively, subtracted from the 
NOAA Atlas 14 rainfall values in figure 4-43.  A positive difference means that NOAA Atlas 

Figure 4-45:  Plot of Ratios of Shorter Duration to the 24-Hour Precipitation for 
Columbus, OH 
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14 rainfall is higher.  The differences for 2 to 10 years are relatively small.  NOAA Atlas 14 
has larger precipitation for the 25- to 100-year 1- to 24-hour durations. 

 

Figure 4-47:  Difference between NOAA Atlas 14 and Hydro 35 / TP-40 Rainfall for Columbus, OH 

Duration 2-yr 
Difference 

(in) 

5-yr Difference 
(in) 

10-yr 
Difference 

(in) 

25-yr 
Difference 

(in) 

50-yr 
Difference 

(in) 

100-yr 
Difference 

(in) 
5-min Hydro 35 – 0.01 0.01 0.02 0.02 0.02 0.03 

0-min 0.00 0.00 -0.01 – 0.03 – 0.06 – 0.09 
15-min – 0.02 – 0.04 – 0.05 – 0.09 – 0.12 – 0.15 

30-min TP-40 0.06 0.04 0.02 0.04 0.02 0.00 
1-hr 0.06 0.05 0.11 0.11 0.13 0.11 
2-hr 0.02 0.03 – 0.01 0.17 0.17 0.29 
3-hr – 0.02 0.04 – 0.03 0.04 0.21 0.21 
6-hr – 0.01 – 0.04 – 0.10 0.11 0.13 0.43 

12-hr – 0.09 – 0.10 – 0.10 0.15 0.44 0.28 
24-hr 0.02 – 0.07 – 0.07 0.14 0.33 0.65 

 
F.  Summary 

Precipitation-frequency data and storm distribution are important components of the NRCS 
hydrologic modeling procedures.  Different assumptions and procedures were used in preparation 
of precipitation frequency atlases TP–40 and NOAA Atlas 14 by the NWS and in preparation of 
storm distributions NRCS Type II and those based on NOAA Atlas 14 data.  Understanding these 
differences will provide more background on why hydrologic results could be different when 
changing from TP–40 and the Type I, IA, II, or III storm distribution to NOAA Atlas 14 data and 
a locally derived storm distribution.  With many more years of data, better quality control, and 
more short duration measurements, much more confidence can be placed in the NOAA Atlas 14 
precipitation-frequency estimates and storm distributions based on the estimates. 

630.0406  Smoothing Precipitation Values from NOAA Atlas 14 Data 

A.  Background 

(1)  For a location with smooth data the incremental intensity for durations from 5 minutes 
through 24 hours plots as a line with either 1 or 2 straight-line segments on a log-log graph.  
Incremental intensity is defined in the Data Smoothing Technique section that follows. 

(2)  Using a 24-hour design storm distribution is standard practice in NRCS engineering design 
and is incorporated into the WinTR–20 (NRCS 2010a), WinTR–55 (NRCS 2009a), and 
EFH2 (NRCS 2014) computer programs.  To best reflect the updated NOAA Atlas 14 (NWS 
2005) partial duration precipitation frequency data, a site-specific distribution may be 
developed based on the updated NOAA Atlas 14 data.  These data are downloaded from the 
NOAA Atlas 14 website as a comma-separated value (csv) file. 

(3)  As described in Merkel et al. (2006), investigations showed that developing regional storm 
distributions to replace the prior standard NRCS storm distributions (NRCS Types I, IA, II, 
and III) is feasible in States covered by NOAA Atlas 14. 

(4)  The primary assumption of NRCS storm distributions is that the maximum precipitation of all 
storm durations from 5 minutes to 24 hours occurs within the design storm, so that all 
precipitation intensities are represented in a single storm distribution.  This allows the design 
storm distribution to be used for watersheds with times of concentration from 5 minutes to 24 
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hours.  Otherwise, the engineer would have to develop or select a design storm distribution 
with a duration equal to the time of concentration that is unique to the watershed being 
analyzed. 

(5)  The basic data used to develop the rainfall distribution are the 5-minute through 24-hour 
precipitation for a particular return period, such as 25 years. 

(6)  Each duration in NOAA Atlas 14 was analyzed separately.  For example, the maximum 60-
minute value for each year was extracted and analyzed for precipitation-frequency.  The 
specific techniques to derive mean, standard deviation, skew, and apply a probability 
distribution to the data are described in each volume of NOAA Atlas 14, respectively.  Then 
the maximum 2-hour value for each year was extracted and analyzed for precipitation-
frequency.  This duration also had a mean, standard deviation, and skew.  The maximum 3-, 
6-, 12-, 24-hour, etc., durations were extracted from the data and analyzed separately; each 
with a calculated mean, standard deviation, and skew.  No attempt was made to smooth these 
data across the series of durations for each return period.  With all the limitations of the data 
being analyzed and the possibility of high or low values that could affect the skew, the curves 
for each duration could converge, diverge, or remain relatively parallel.  If data are not 
smoothed, there is a possibility that the resulting storm distribution will not be smooth.  This 
can potentially cause irregularities in a hydrograph developed from the storm distribution 
such as bumps, sharp rises and drops, and misplaced gradual increases or decreases in 
discharge. 

B.  Data Smoothing Technique 

(1)  Several mathematical techniques were investigated to determine a computationally efficient, 
accurate, practical, stable, and robust procedure.  The relationship of rainfall intensity (inches 
per hour) and duration is smoothed since the generated hydrograph is primarily dependent on 
the relationship of precipitation intensity with duration. 

(2)  The relationship of intensity and duration is based on a factor defined as incremental 
intensity.  Incremental intensity is defined as the difference in precipitation divided by the 
difference in duration.  The incremental intensity for the 5-minute duration is equal to the 5-
minute precipitation divided by 1/12 and has the units of inches per hour.  The incremental 
intensity for the 10-minute duration is the 10-minute precipitation minus the 5-minute 
precipitation divided by 1/12 (the difference between 5 and 10 minutes in units of hours).  
Incremental intensity is calculated and smoothed for each return period independently. 

(3)  Plotting this relationship on a log-log scale, it may be a straight line, have slight curvature, or 
have several dips or waves.  Examples of these non-smoothed plots follow in figures 4-48, 4-
49, and 4-50. 



Title 210 – National Engineering Handbook 

(210-630-H, Amend. 88, Aug 2019)  
630–4.42 

 
 

 

Figure 4-48:  Plot for Sun City, CA, Not Smooth Between 10 Minutes and 6 
Hours 

Figure 4-49:  Curve with Irregularities at 15 Minutes and 3 Hours for Mercer 
County, NJ 
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(4)  Figures 5-51, 4-52, and 4-53 show three examples of the smoothing procedure.  The 

smoothing procedure keeps the 60-minute and 24-hour precipitation unchanged from the 
original NOAA Atlas 14 partial duration values.  The 5-, 10-, 15-, and 30-minute, and the 2-, 
3-, 6-, and 12-hour values are open to adjustment.  The smoothing procedure computes a 
straight line on the log-log plot that extends from 5-minute to 60-minute durations.  The line 
is computed such that the squared difference between the smoothed 5-minute, 10-minute, 15-
minute, and 30-minute incremental intensity values and the original values is minimized and 
the 60-minute precipitation is equal to the original value.  A second straight-line segment is 
computed on the log-log plot that extends from the 60-minute value to the 24-hour (or 1440 
minutes) value.  This line is computed such that the incremental intensity for 60-minute 
duration is the same as calculated for the first line segment and the 60-minute and 24-hour 
precipitation values are unchanged.  Calculating the adjusted values of precipitation involves 
a trial and error optimization procedure.  The smoothing algorithm is available in the WinTR-
20 system.  Three examples follow, shown by figures 4-51, 4-52, and 4-53. 

Figure 4-50:  A Very Irregular Plot of Incremental Intensity for Bethlehem 
Upper Works, U.S. Virgin Islands 
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Figure 4-51:  25-Year Incremental Intensity Plot for Original and Smoothed 
Data for Mercer County, NJ 

Figure 4-52:  25-Year Incremental Intensity Plot for Original and Smoothed 
Data for Phoenix, AZ 



Title 210 – National Engineering Handbook 

(210-630-H, Amend. 88, Aug 2019)  
630–4.45 

 
(5)  The plot of 25-year storm hydrographs is based on original non-smoothed data (original) and 

smoothed data (smooth) for the three examples in figures 4-54, 4-55, and 4-56. 
(6)  The orange hydrograph (original) in figure 4-57 is based on the original data.  The blue 

hydrograph (smooth) is based on the smoothed data.  In this case, the peak discharge is 
practically the same and the hydrograph shape is very similar. 

(7)  In figure 4-55, the orange hydrograph (original) is based on the original data.  The blue 
hydrograph (smooth) is based on the smoothed data.  In this case, the two are somewhat 
different.  Between about 18 and 24 hours, the hydrograph based on the original data 
increases slightly to 24 hours. 

(8)  In figure 4-56, the orange hydrograph (original) is based on the original data.  The blue 
hydrograph (smooth) is based on the smoothed data.  In this case, the two are visibly 
different.  At about 11 hours, there is a slight dip in the hydrograph based on the original data.  
This has been eliminated in the hydrograph based on the smoothed NOAA Atlas 14 data. 

(9)  In WinTR–20, the user has the option to develop storm distributions based on the original 
precipitation-frequency data (NOAA Atlas 14 data) or smoothed data.  A summary file is 
developed if the user chooses to smooth the data.  This file contains the original precipitation 
data, the smoothed data, incremental intensity for both, and difference between the original 
data and the smoothed data.  The name of the file is the same as the NOAA Atlas 14 .csv file 
except the extension is changed to .dff to represent the difference.  Part of an example file is 
included in figure 4-57. 

 
 

Figure 4-53:  25-Year Incremental Intensity Plot for Original and Smoothed 
Data for Bethlehem Upper Works, U.S. Virgin Islands 
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Figure 4-54:  25-Year Hydrograph Plots for Mercer County, NJ 

Figure 4-55:  25-Year Hydrograph Plots for Phoenix, AZ 
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Figure 4-57:  Table Showing Intensity Reversals for NOAA Atlas 14 data at Bethlehem Upper Works in the 
U.S. Virgin Islands 

Data smoothing information 25 year 
Duration 5 min 10 min 15 

min 
30 
min 

60 
min 

2 hr 3 hr 6 hr 12 hr 24 hr 

Precip 0.76 1.03 1.33 2.13 3.15 4.32 4.85 7.19 10.48 12.84 
Inc_Int 9.120 3.240 3.600 3.200 2.040 1.170 0.530 0.780 0.548 0.197 
Sm_Precip 0.62 1.05 1.40 2.13 3.15 4.45 5.44 7.34 9.76 12.84 
Sm_Inc_Int 7.440 5.185 4.198 2.926 2.039 1.297 0.995 0.633 0.403 0.256 
Precip_dif – 0.140 0.022 0.072 0.003 0.000 0.127 0.592 0.152 – 0.722 0.000 
Data smoothing information 50 year 
Duration 5 min 10 min 15 

min 
30 
min 

60 
min 

2 hr 3 hr 6 hr 12 hr 24 hr 

Precip 0.82 1.12 1.44 2.31 3.42 4.81 5.38 8.30 12.44 15.54 
Inc_Int 9.840 3.600 3.840 3.480 2.220 1.390 0.570 0.937 0.690 0.258 
Sm_Precip 0.67 1.14 1.52 2.31 3.42 4.90 6.06 8.37 11.45 15.54 
Sm_Inc_Int 8.040 5.616 4.553 3.180 2.221 1.475 1.161 0.0771 0.512 0.340 
Precip_dif – 0.150 0.018 0.077 0.002 0.000 0.085 0.677 0.071 – 0.994 0.000 

 

(10)  In figure 4-57 for NOAA Atlas 14 data at Bethlehem Upper Works in the U.S. Virgin 
Islands, the incremental intensity increases from 10 to 15 minutes and from 3 to 6 hours.  
Since the incremental intensity should decrease from 5 minutes to 24 hours, this is an 
example where data smoothing is recommended. 

(11)  The first line in the table (Duration) lists the precipitation durations.  The second line in the 
table (Precip) lists the original NOAA Atlas 14 precipitation data in inches.  The third line 
(Inc_Int) is the incremental intensity for the original NOAA Atlas 14 precipitation data in 
units of inches per hour.  The fourth line (Sm_Precip) is the smoothed precipitation values in 
inches (notice the 60-minute and 24-hour values are unchanged).  The fifth line (Sm_Inc_Int) 
is the incremental intensity for the smoothed precipitation data in units of inches per hour.  
The sixth line (Precip_dif) is the difference between the NOAA Atlas 14 precipitation and the 

Figure 4-56:  25-Year Hydrograph Plots for Bethlehem Upper Works, U.S. 
Virgin Islands 
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smoothed values in inches.  Figure 4-58 shows the rainfall distributions developed for the 
Phoenix Airport, AZ, based on the original and smoothed data. 

(12)  The rainfall distribution based on original data has several sharp breaks in slope at about 9, 
11.5, 12.5, and 15 hours which will cause irregularities in the computed hydrograph. 

 

 

C.  Examples of Smoothing NOAA Atlas 14 Data 

(1)  An example of impacts of smoothing data across durations is shown for St. George, UT.  Part 
of the NOAA Atlas 14 partial duration data are shown in figure 4-59.  Annual maximum 
precipitation for each duration is tabulated for the period of record.  Maximum precipitation 
for each duration could happen on any day of the year and often, the maxima for various 
durations were not from the same storm event.  For example, the maximum 5-minute 
precipitation and maximum 24-hour precipitation of the year may not be from the same storm 
event.  When placing these durations into a maximized and centered design storm 
distribution, irregularities may occur. 

(2)  For the data in figure 4-59, an irregularity occurs between the 2-hour and 3-hour durations 
from the 10-year to 500-year return periods.  Considering the 50-year return period, the 
additional precipitation between 2 hours and 3 hours is 0.05 inches (an intensity of only 0.05 
inches per hour).  The additional precipitation from 3 hours to 6 hours is 0.30 inches (an 
intensity of 0.10 inches per hour).  The precipitation intensity for all other durations generally 
decreases as the duration increases.  The precipitation-frequency for each duration is based on 
actual measurements.  The major problem is that when setting up a maximized design storm 
distribution, when this type of intensity reversal occurs, the hydrograph generated by the 
storm distribution has an irregular shape, mostly evident in dips in the hydrograph before and 

Figure 4-58:  Smooth and Original 100-Year Rainfall Distribution for Phoenix 
Airport 
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after the peak.  The plot of a hydrograph using the St. George data for a 500-year return 
period is shown in figure 4-60. 

(3)  The hydrograph rises slightly between 13.0 and 15.0 hours.  Using the zoom feature makes 
this more obvious; see figure 4-61. 

(4)  Figure 4-62 shows a hydrograph generated for a hypothetical watershed in the U.S. Virgin 
Islands using original data at Upper Bethlehem Works. 

 
Figure 4-59:  NOAA Atlas 14 Partial Duration Data for St. George, UT 

 Average recurrence interval (years) 
Duration 1 2 5 10 25 50 100 200 500 
5-min: 0.128 

(0.111-
0.148) 

0.163 
(0.144-
0.190) 

0.219 
(0.190-
0.251) 

0.266 
(0.230-
0.308) 

0.341 
(0.291-
0.392) 

0.405 
(0.341-
0.466) 

0.479 
(0.394-
0.555) 

0.561 
(0.448-
0.652) 

0.688 
(0.526-
0.816) 

10-min: 0.195 
(0.169-
0.225) 

2.49 
(0.219-
0.289) 

0.333 
(0.289-
0.382) 

0.405 
(0.351-
0.469) 

0.52 
(0.443-
0.596) 

0.617 
(0.518-
0.709) 

0.73 
(0.599-
0.844) 

0.855 
(0.682-
0.993) 

1.05 
(0.805-
1.24) 

15-min: 0.241 
(0.209-
0.279) 

0.309 
(0.272-
0.358) 

0.413 
(0.359-
0.474) 

0.502 
(0.435-
0.582) 

0.644 
(0.550-
0.739) 

0.765 
(0.643-
0.879) 

0.905 
(0.743-
0.844) 

1.06 
(0.846-
1.23) 

1.3 
(0.993-
1.54) 

30-min: 0.325 
(0.282-
0.376) 

0.416 
(0.366-
0.483) 

0.556 
(0.483-
0.638) 

0.676 
(0.585-
0.783) 

0.868 
(0.740-
0.995) 

1.03 
(0.865-
1.18) 

1.22 
(1.00-
1.41) 

1.43 
(1.14-
1.66) 

1.75 
(1.34-
2.08) 

60-min: 0.402 
(0.349-
0.465) 

0.514 
(0.453-
0.597) 

0.688 
(0.598-
0.790) 

0.837 
(0.725-
0.969) 

1.07 
(0.916-
1.23) 

1.27 
(1.07-
1.47) 

1.51 
(1.24-
1.75) 

1.77 
(1.41-
2.05) 

2.16 
(1.66-
2.57) 

2-hr: 0.489 
(0.437-
0.553) 

0.602 
(0.542-
0.687) 

0.779 
(0.700-
0.882) 

0.935 
(0.834-
1.06) 

1.18 
(1.04-
1.33) 

1.38 
(1.19-
1.55) 

1.6 
(1.35-
1.82) 

1.86 
(1.53-
2.13) 

2.24 
(1.78-
2.61) 

3-hr: 0.541 
(0.488-
0.605) 

0.67 
(0.610-
0.755) 

0.853 
(0.774-
0.955) 

1.01 
(0.909-
1.12) 

1.24 
(1.11-
1.39) 

1.43 
(1.26-
1.60) 

1.64 
(1.41-
1.85) 

1.87 
(1.58-
2.16) 

2.24 
(1.83-
2.64) 

6-hr: 0.669 
(0.606-
0.745) 

0.834 
(0.763-
0.932) 

1.05 
(0.956-
1.17) 

1.23 
(1.11-
1.38) 

1.5 
(1.34-
1.67) 

1.73 
(1.51-
1.93) 

1.96 
(1.69-
2.22) 

2.22 
(1.88-
2.53) 

2.6 
(2.13-
3.01) 

12-hr: 0.809 
(0.736-
0.893) 

1.01 
(0.919-
1.12) 

1.26 
(1.14-
1.39) 

1.48 
(1.33-
1.63) 

1.76 
(1.58-
1.95) 

1.98 
(1.75-
2.21) 

2.22 
(1.93-
2.49) 

2.46 
(2.12-
2.79) 

2.8 
(2.35-
3.20) 

24-hour 0.933 
(0.87-
0.994) 

1.16 
(1.09-
1.24) 

1.46 
(1.37-
1.55) 

1.69 
(1.58-
1.80) 

2.01 
(1.87-
2.14) 

2.26 
(2.09-
2.40) 

2.51 
(2.31-
2.67) 

2.76 
(2.54-
2.95) 

3.11 
(2.82-
3.33) 

1/ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS) 
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Figure 4-60:  Hydrograph Based on St. George, UT, Original Rainfall Data 

Figure 4-61:  Detail of the Hydrograph Based on St. George, UT, Original 
Rainfall Data between 12.5 and 16.5 Hours Using the Zoom Feature 
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D.  Conclusion and Summary 

(1)  The technique for smoothing NOAA Atlas 14 precipitation data is described and 
demonstrated in this section.  Impacts of smoothing data have been demonstrated for a 
hydrologic model of a watershed treated as a single unit (not divided into sub-watershed or 
subareas).  If a hydrologic model were set up with a number of subareas, channel reaches, 
reservoirs, and diversions, the shape of hydrographs is important because they are added, 
routed, split, etc.  If data are not smoothed, the irregularly shaped hydrographs may cause 
unexpected results. 

(2)  In testing where these irregularities occur, the States covered by NOAA Atlas 14 volumes 1 – 
Semi-arid Southwest (NWS 2006a), 3 – Puerto Rico and US Virgin Islands (NWS 2006c), 4 
– Hawaiian Islands (NWS 20011a), 5 – Pacific Islands (NWS 2011b), 6 – California (NWS 
2011c), and 7 – Alaska (NWS 2012) show the most need for the data to be smoothed in order 
to produce relatively smooth hydrographs.  States in the Ohio River Basin, Midwest, and 
Southeast – NOAA Atlas volumes 2 (NWS 2006b), 8 (NWS 2013a), and 9 (NWS 2013b) – 
show a lesser degree of this irregularity of precipitation intensity. 

(3)  As a general guideline, smoothing the data when applying the WinTR-20 hydrologic model is 
recommended.  Regional rainfall distributions developed for California, Nevada, Midwest 
and southeast States, Ohio Valley and neighboring States, and others are based on smooth 
NOAA Atlas 14 data. 

630.0407  Development of 24-Hour Rainfall Distribution From 5-Minute Through 
24-Hour Rainfall Values 

A.  Introduction 

This section covers the procedure to develop a 24-hour rainfall distribution from a set of rainfall 
data values for 5-minute through 24-hour durations.  This procedure may be repeated for each 
return period from 1 to 500 years.  The following procedure to operate with partial duration 
precipitation values is incorporated into the NRCS hydrologic model WinTR–20 (NRCS 2010a).  
The data used in this section were downloaded for Columbus, OH, WSO Airport in the area 
covered by NOAA Atlas 14, volume 2 (NWS 2006b). 

Figure 4-62:  Hydrograph with Original Unsmoothed Data 
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B.  Procedure 

Input to this procedure consists of precipitation values for 5-, 10-, 15-, 30-, and 60-minute and 2-, 
3-, 6-, 12-, and 24-hour durations for a single recurrence interval such as the 25-year-average 
recurrence interval.  The procedure to develop the 24-hour rainfall distribution applies to both 
original data and smoothed data (see 630.0406 for data smoothing technique). 

(i)  Step 1.—Calculate ratios of shorter duration to 24-hour precipitation.  The 25-year return 
period original (non-smoothed) values are used in this example.  Figure 4-63 includes 
duration, precipitation values, and calculated ratios to the 24-hour value.  For example, 
the 60-minute value is 2.25 inches, and the 24-hour value is 4.44 inches.  Therefore, the 
ratio is 0.5068. 

(ii)  Step 2.—Calculate a preliminary rainfall distribution based on the ratios from figure 4-
63.  Figure 4-64 shows the time in clock hours, time in decimal hours, and preliminary 
cumulative rainfall ratios.  
• Since the preliminary rainfall distribution is symmetrical about 12 hours, figure 4-63 

shows the 12-/24-hour ratio to be 0.8784 for this example.  Thus, 87.84 percent of the 
rain will fall between 6 and 18 hours.  Since the rainfall distribution is symmetrical 
about 12 hours, half of this rain will fall before 12 hours and half will fall after 12 
hours.  The cumulative rain ratio at 6 hours of the preliminary distribution is 0.5 – 
(12-/24-hr ratio)/2 or in equation form— 

0.5 – (0.8784 / 2) = 0.0608 
• The 6-/24-hour ratio is placed from 9 hours to 15 hours of the 24-hour rainfall 

distribution.  The cumulative rain ratio at 9 hours of the preliminary distribution is 
0.5 – (6-/24-hr ratio)/2 or in equation form— 

0.5 – (0.7568 / 2) = 0.1216 
• The 10-minute/24-hour ratio is used to calculate the cumulative rain ratio at 11.9167 

hours.  The cumulative rain ratio at 11.9167 hours of the preliminary distribution is 
0.5 – (10-min/24-hr ratio)/2 or in equation form— 

0.5 – (0.2252 / 2) = 0.3874 
• The 5-minute/24-hour ratio is used in step 8. 
• Figure 4-67 becomes the basis for interpolating a rainfall distribution for 24 hours at 

a time increment of 0.1 hour. 
(iii)  Step 3.—Determine cumulative rain ratios for times from 0.0 to 9.0 hours (figure 4-65). 

CRR(t) = a(t2 ) + bt   (eq. 4–1) 
Where— 
CRR(t) = cumulative rain ratio at time t hours 
a = ( 2/3 CRR(9) - CRR(6))/18 
b = (CRR(6)-36a)/6 

(iv)  Step 4.—Determine cumulative rain ratios for times from 9.0 to 10.5 hours (fig. 4-66).  
An equation is developed such that the cumulative rainfall ratio gradually and constantly 
increases between 9.0 and 10.5 hours yet still matches the ratios at 9.0 and 10.5 hours in 
figure 4-64. 

CRR(t) = a2 (t2 ) + b2 t  (eq. 4–2) 
Where— 
CRR(t) = cumulative rain ratio at time t hours 
a2 = ( 9/10.5 CRR(10.5) – CRR(9)) / 13.5 
b2 = (CRR(9) – 81a2 )/9 

(v)  Step 5.—Determine cumulative rain ratios for times from 10.5 to 11.5 hours (figure 4-
67).  An equation is developed such that the cumulative rainfall ratio gradually and 
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constantly increases between 10.5 and 11.5 hours yet still matches the ratios at 10.5, 11.0, 
and 11.5 hours in figure 4-64. 

CRR(t) = a3 (t2 ) + b3 t + c3  (eq. 4–3) 
Where— 

CRR(t) = cumulative rain ratio at time t hours 
a3 = 2 ( CRR(11.5) – 2 CRR(11) + CRR(10.5)) 
b3 = CRR (11.5) – CRR(10.5) – 22a3 
c3 = 11 – 121a3 – 11b3 

(vi)  Step 6.—Determine cumulative rain ratios for times from 11.6 to 11.9 hours (figure 4-
68). 

CRR(11.6) = CRR(11.5) + Factor(11.6)(CRR(11.75) − CRR(11.5)) 
Where— 

Factor(11.6)=– 0.867 Intensity(11.5)+0.4337 
Intensity(11.5)=(CRR(11.5) – CRR(11.4))/0.1 
The value of Factor(11.6) has a maximum value of 0.399.  If the value of Factor 
(11.6) is greater than 0.399, it is changed to 0.399. 
Intensity(11.5) = (0.2466 – 0.2349) / 0.1 = 0.117 
Factor(11.6) = (– 0.867 × 0.117) + 0.4337 = 0.3322 
CRR(11.6) = 0.2466 + 0.3322 × (0.3041 – 0.2466) =0.2657. 
CRR(11.7) = CRR(11.5) + Factor(11.7)(CRR(11.75) − CRR(11.5)) 

Where— 
Factor(11.7) = – 0.4917 (Intensity(11.5)) + 0.8182 
The value of Factor(11.7) has a maximum value of 0.799. 
Factor(11.7) = (–0.4917 × 0.117)+0.8182 = 0.7607 
CRR(11.7) = 0.2466+0.7067×(0.3041–0.2466)=0.2903 
CRR(11.8)=CRR(11.75)+(11.8–11.75)/(11.875–11.75)(CRR(11.875)–CRR(11.75)) 
CRR(11.8)=0.3041+0.4(0.3615–0.3041)=0.3270 
CRR(11.9)=CRR(11.875)+(11.9–11.875)/(11.9167–11.875)(CRR(11.9167)–CRR(11.875)) 
CRR(11.9)=0.3615+0.6(0.3874–0.3615)=0.3770 

(vii)  Step 7.—Determine cumulative rain ratios for times from 12.1 to 24 hours (fig. 4-69).  
Since the rainfall distribution is symmetrical, the cumulative rain ratios from 12.1 to 24 
hours are based on the cumulative rain ratios from 0.0 to 11.9 hours.  The cumulative rain 
ratio at 12.1 hours is 1.0 minus the cumulative rain ratio at 11.9 hours.  The cumulative 
rain ratio at 12.2 hours is 1.0 minus the cumulative rain ratio at 11.8 hours.  This 
continues all the way to 24 hours (where the 24-hour cumulative rain ratio is 1.0 – 0.0 or 
1.0). 

 
Figure 4–63:  Duration, Precipitation, and Ratio Values, Columbus, OH, WSO Airport for the 25-Year 
Return Period 

Duration 5 min 10 min 15 min 30 min 60 min 2 hr 3 hr 6 hr 12 hr 24 hr 
Precipitation 
(inches) 

0.65 1.00 1.23 1.74 2.25 2.67 2.84 3.36 3.90 4.44 

Ratio to 24-hr 0.1464 0.2252 0.2770 0.3919 0.5068 0.6014 0.6396 0.7568 0.8784 1.00 
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Figure 4-64:  Preliminary Cumulative Rain Ratio Values 

Clock time Time (hours) 
Preliminary 
cumulative rain 
ratio 

0:00 AM 0.0 0.0 
6:00 6.0 0.0608 
9:00 9.0 0.1216 
10:30 10.5 0.1802 
11:00 11.0 0.1993 
11:30 11.5 0.2466 
11:45 11.75 0.3041 
11:52:30 11.875 0.3615 
11:55 11.9167 0.3874 
12:05 PM 12.0833 0.6126 
12:07:30 12.125 0.6385 
12:15 12.25 0.6959 
12:30 12.5 0.7534 
1:00 13.0 0.8007 
1:30 13.5 0.8198 
3:00 15.0 0.8784 
6:00 18.0 0.9392 
12:00 AM 24.0 1.0 

 
Figure 4-65:  Cumulative Rain Ratios from 0.0 to 9.0 Hours 

Time 
(hours) 

Cumulative 
rain ratio 

Time 
(hours) 

Cumulative 
rain ratio 

Time 
(hours) 

Cumulative 
rain ratio 

Time 
(hours) 

Cumulative 
rain ratio 

0.0 0.0000 2.3 0.0137 4.6 0.0394 6.9 0.0769 
0.1 0.0003 2.4 0.0146 4.7 0.0408 7.0 0.0788 
0.2 0.0007 2.5 0.0155 4.8 0.0422 7.1 0.0808 
0.3 0.0011 2.6 0.0164 4.9 0.0436 7.2 0.0827 
0.4 0.0015 2.7 0.0173 5.0 0.0450 7.3 0.0847 
0.5 0.0020 2.8 0.0183 5.1 0.0465 7.4 0.0867 
0.6 0.0024 2.9 0.0193 5.2 0.0480 7.5 0.0887 
0.7 0.0029 3.0 0.0203 5.3 0.0495 7.6 0.0907 
0.8 0.0034 3.1 0.0213 5.4 0.0511 7.7 0.0928 
0.9 0.0040 3.2 0.0223 5.5 0.0526 7.8 0.0949 
1.0 0.0045 3.3 0.0234 5.6 0.0542 7.9 0.0970 
1.1 0.0051 3.4 0.0245 5.7 0.0558 8.0 0.0991 
1.2 0.0057 3.5 0.0256 5.8 0.0575 8.1 0.1013 
1.3 0.0063 3.6 0.0268 5.9 0.0591 8.1 0.1013 
1.4 0.0069 3.7 0.0279 6.0 0.0608 8.2 0.1034 
1.5 0.0076 3.8 0.0291 6.1 0.0625 8.3 0.1056 
1.6 0.0083 3.9 0.0303 6.2 0.0642 8.4 0.1078 
1.7 0.0090 4.0 0.0315 6.3 0.0660 8.5 0.1101 
1.8 0.0097 4.1 0.0328 6.4 0.0677 8.6 0.1123 
1.9 0.0105 4.2 0.0341 6.5 0.0695 8.7 0.1146 
2.0 0.0113 4.3 0.0353 6.6 0.0714 8.8 0.1169 
2.1 0.0121 4.4 0.0367 6.7 0.0732 8.9 0.1193 
2.2 0.0129 4.5 0.0380 6.8 0.0750 9.0 0.1216 
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Figure 4–66:  Cumulative Rain Ratios from 9.0 to 10.5 Hours 

Time 
(hours) 

Cumulative 
rain ratio 

9.0 0.1216 
9.1 0.1252 
9.2 0.1288 
9.3 0.1325 
9.4 0.1362 
9.5 0.1399 
9.6 0.1437 
9.7 0.1476 
9.8 0.1515 
9.9 0.1554 
10.0 0.1594 
10.1 0.1635 
10.2 0.1676 
10.3 0.1717 
10.4 0.1759 
10.5 0.1802 

 
Figure 4-67:  Cumulative Rain Ratios from 10.5 to 11.5 Hours 

Time 
(hours) 

Cumulative 
rain ratio 

10.5 0.1802 
10.6 0.1818 
10.7 0.1845 
10.8 0.1883 
10.9 0.1932 
11.0 0.1993 
11.1 0.2065 
11.2 0.2149 
11.3 0.2243 
11.4 0.2349 
11.5 0.2466 

 
Figure 4-68:  Cumulative Rain Ratios from 11.6 to 11.9 Hours 

Time 
(hours) 

Cumulative 
Rain Ratio 

11.6 0.2657 
11.7 0.2903 
11.8 0.3270 
11.9 0.3770 
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Figure 4-69:  Cumulative Rain Ratios from 12.1 to 24.0 Hours 
Time 
(hours) 

Cumulative 
rain ratio 

Time 
(hours) 

Cumulative 
rain ratio 

Time 
(hours) 

Cumulative 
rain ratio 

12.1 0.6230 16.1 0.9030 20.1 0.9697 
12.2 0.6730 16.2 0.9051 20.2 0.9709 
12.3 0.7097 16.3 0.9072 20.3 0.9721 
12.4 0.7343 16.4 0.9093 20.4 0.9732 
12.5 0.7534 16.5 0.9113 20.5 0.9744 
12.6 0.7651 16.6 0.9133 20.6 0.9755 
12.7 0.7757 16.7 0.9153 20.7 0.9766 
12.8 0.7851 16.8 0.9173 20.8 0.9777 
12.9 0.7935 16.9 0.9192 20.9 0.9787 
13.0 0.8007 17.0 0.9212 21.0 0.9797 
13.1 0.8068 17.1 0.9231 21.1 0.9807 
13.2 0.8117 17.2 0.9250 21.2 0.9817 
13.3 0.8155 17.3 0.9268 21.3 0.9827 
13.4 0.8182 17.4 0.9286 21.4 0.9836 
13.5 0.8198 17.5 0.9305 21.5 0.9845 
13.6 0.8241 17.6 0.9323 21.6 0.9854 
13.7 0.8283 17.7 0.9340 21.7 0.9863 
13.8 0.8324 17.8 0.9358 21.8 0.9871 
13.9 0.8365 17.9 0.9375 21.9 0.9879 
14.0 0.8406 18.0 0.9392 22.0 0.9887 
14.1 0.8446 18.1 0.9409 22.1 0.9895 
14.2 0.8485 18.2 0.9425 22.2 0.9903 
14.3 0.8524 18.3 0.9442 22.3 0.9910 
14.4 0.8563 18.4 0.9458 22.4 0.9917 
14.5 0.8601 18.5 0.9474 22.5 0.9924 
14.6 0.8638 18.6 0.9489 22.6 0.9931 
14.7 0.8675 18.7 0.9505 22.7 0.9937 
14.8 0.8712 18.8 0.9520 22.8 0.9943 
14.9 0.8748 18.9 0.9535 22.9 0.9949 
15.0 0.8784 19.0 0.9550 23.0 0.9955 
15.1 0.8807 19.1 0.9564 23.1 0.9960 
15.2 0.8831 19.2 0.9578 23.2 0.9966 
15.3 0.8854 19.3 0.9592 23.3 0.9971 
15.4 0.8877 19.4 0.9606 23.4 0.9976 
15.5 0.8899 19.5 0.9620 23.5 0.9980 
15.6 0.8922 19.6 0.9633 23.6 0.9985 
15.7 0.8944 19.7 0.9647 23.7 0.9989 
15.8 0.8966 19.8 0.9659 23.8 0.9993 
15.9 0.8988 19.9 0.9672 23.9 0.9997 
16.0 0.9009 20.0 0.9685 24.0 1.0000 

 
(viii)  Step 8.—Determine cumulative rain ratio for time 12.0 hours. 

• Since the rainfall distribution is developed at a time increment of 0.1 hour (6 min.), 
the 5-minute/24-hour and 10-minute/24-hour ratios are used to calculate the 
maximum 6-minute rainfall ratio. 

6-min / 24-hr ratio = 5-min / 24-hr ratio + 0.2 (10-min /24-hr ratio – 5-min /24-hr ratio) 
6-min / 24-hr ratio = 0.1464 + 0.2 (0.2252 – 0.1464) = 0.16216 

• The 6-minute /24-hour rainfall ratio is subtracted from the cumulative rain ratio at 
12.1 hours in order to define a cumulative rain ratio at 12.0 hours.  By making this 
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adjustment, the maximum 5-minute rainfall ratio is represented in the final rainfall 
distribution.  

Ratio(12.0) = Ratio(12.1) - 6-minute/24-hour ratio 
Ratio (12.0) = 0.62297 – 0.16216 = 0.46081 

• The rainfall distribution algorithm is programmed in WinTR–20.  In WinTR–20, this 
procedure is completed for all return periods from 1 to 500 years.  Each return period 
will have a unique rainfall distribution. 

C.  Discussion 

(1)  In step 3, curves are used to interpolate the cumulative rain ratio at the 0.1-hour time steps.  It 
seems logical to interpolate the ratios at these time steps linearly from the preliminary rainfall 
distribution in figure 4-64.  If that is done, there will be irregularities in the hydrograph 
developed from the rainfall distribution.  These irregularities include sharp changes in 
discharge at rainfall distribution break points (such as 6 and 9 hours) and gradual increases in 
discharge on the falling tail of the hydrograph.  For these reasons, equations are developed 
such that the cumulative rainfall ratio gradually and constantly increases between 0 and 11.9 
hours yet still matches the ratios in figure 4-64. 

(2)  The rainfall distribution developed in steps 1 through 8 is plotted in figure 4-70. 
 

D.  Summary 
The NRCS procedure for developing a storm distribution based on precipitation values at 
durations from 5 minutes to 24 hours is documented in this section.  The procedure is 
implemented in the WinTR–20 computer program and is also available in a spreadsheet available 
from the WNTSC National Water Quality and Quantity Team website http://go.usa.gov/rXYw 
(NRCS 2011) under “Technical Information.”  By documenting the assumptions and procedure, 
the procedure becomes more transparent and understandable.  In future years, when more 
research is available on storm structure, hydraulic engineers will be able to make improvements 
to the procedure. 

Figure 4-70:  Rainfall Distribution Developed in Example in 630.0407 

http://go.usa.gov/rXYw
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630.0408  Example of Determining a Design Rainfall Distribution for a Region 
Based on GIS Data 

A.  Introduction 

(1)  This section describes development of four regional standardized rainfall distributions for the 
Ohio Valley and neighboring States in the NOAA Atlas 14 Volume 2 (NWS, 2006b) area.  
Other NRCS technical literature, including software user guides, training materials, and State 
supplements, describe use of these rainfall distributions. 

(2)  Use of a regional rainfall distribution may produce different peak discharges than if the site-
specific rainfall distribution is used.  This is because the ratios of shorter duration, such as 60 
minutes to 24-hour rainfall, vary across the region.  Also, if the regional rainfall distribution 
is based on a single storm, such as the 25-year, a site-specific 100-year rainfall distribution 
may be different and produce different peak discharges.  For this reason, the regional rainfall 
distributions were tested against site-specific distributions and differences in results were 
evaluated. 

(3)  This section is written for an intermediate or advanced GIS user.  A person with little GIS 
experience could find this material difficult to understand.  If this is the case, ask a more 
experienced GIS user for an explanation.  Even though the recommended method for 
developing a rainfall distribution is on a site-by-site basis with a unique distribution for each 
return period, sometimes a rainfall distribution covering a geographic area is desirable.  For 
small-scale NRCS hydrologic projects, the NRCS EFH2 (NRCS 2014) – based on Title 210, 
National Engineering Handbook, Part 650, Chapter 2, “Engineering Field Handbook” (EFH) 
(NRCS 1993) – and WinTR–55 (NRCS 2009a) computer programs are used.  These software 
programs are not capable of developing site-specific rainfall distributions and must rely on 
predeveloped rainfall distributions.  For this reason, regional rainfall distributions were 
developed.  In some localities, maps of ratios of shorter duration to the 24-hour rainfall based 
on GIS layers from NOAA Atlas 14 show high and low bull’s-eyes that do not appear logical 
considering local meteorological conditions.  These may be influenced by the results of the 
statistical analysis of a single rain gage.  By developing a regional rainfall distribution, these 
high and low ratio areas are smoothed out and result in a single more representative rainfall 
distribution. 

B.  Procedure 

(1)  Step 1.—Prepare GIS data layers to include a base map or shapefile of State and county 
boundaries and rainfall data at durations from 5 minutes to 24 hours for the return periods of 
interest.  The NOAA Atlas 14 data layers may be prepared using instructions available from 
the WNTSC National Water Quality and Quantity Team website at http://go.usa.gov/KoZ 
under WinTR–20. 

(2)  Step 2.—Develop ratios of the 5-minute to 24- hour, 10-minute to 24-hour, up to the 12-hour 
to 24-hour duration for return periods of interest using GIS grid layers for the project area.  If 
using Environmental Systems Research Institute (ESRI) GIS software, use the “Spatial 
Analyst Math” commands. 

(3)  Step 3.—Decide which return period is the most important on which to base the regional 
rainfall distribution.  The primary consideration in making this decision is what the rainfall 
distribution will be used for.  In the case of NRCS regional rainfall distributions, they will be 
used primarily to design projects based on the 25-year return period 24-hour rainfall.  It will 
also be used to a lesser degree for design of projects with 10- and 50-year, 24-hour rainfalls.  
An analysis of ratios of shorter duration to the 24-hour rainfall will show how different the 
rainfall distributions could be between selected return periods.  For example, in many 
locations, the ratios for all return periods are similar which would result in very similar 

http://go.usa.gov/KoZ
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rainfall distributions.  However, if the ratios are significantly different, then different rainfall 
distributions would be developed (such as the case in Wilmington, NC, NEH630.0403B 
“Precipitation – Frequency Data Ratio Analyses”). 

(4)  Step 4.—Depending on the purpose of the study, either decide on the region for which to 
develop a single rainfall distribution or decide how many rainfall distributions are desired 
within a certain geographic area.  For example, an average rainfall distribution is desired for a 
single State.  Another example could be to develop a number of rainfall distribution regions 
for a given State or group of States.  Depending on this decision, different procedures are 
used from this point. 
(i)  Step 4A.—If an average rainfall distribution is desired for a single State, use the ESRI 

Spatial Analyst commands to determine the zonal statistics for areas within the State 
boundary.  The Zonal Statistics command will produce the mean, maximum, minimum, 
and range of the ratios for each duration within the selected return period (such as 25 
years).  Once these means are computed, compile the mean ratios for 5 minutes to 12 
hours and build a rainfall distribution based on principles described in this chapter.  
These principles may include smoothing the ratios before building the rainfall 
distribution. 

(ii)  Step 4B.—For the second project type, dividing a geographic area into a number of 
rainfall distribution regions, first decide on the most important duration ratio on which to 
base the boundaries of the rainfall regions, such as the 60-minute to 24-hour ratio.  
Analyze the selected ratio map and determine the maximum and minimum ratios.  Then 
divide the range of ratios into an appropriate number of regions.  For example, if the 
range of 60-minute to 24-hour ratio is from 0.3 to 0.5, a logical procedure would be to 
break the area up into four rainfall distribution regions based on ratios from 0.3 to 0.35, 
0.35 to 0.4, 0.4, to 0.45, and 0.45 to 0.5.  To do this analysis using ESRI tools, use the 
“Spatial Analyst Reclassify” command and set the limits of each class to the desired 
intervals such as region 1 with ratios less than 0.35, region 2 with ratios between 0.35 and 
0.4, region 3 with ratios between 0.4 and 0.45, and region 4 with ratios greater than 0.45.  
Convert this reclassified GIS layer into a polygon shapefile where the boundaries follow 
the four rainfall distribution regions.  If the boundaries are satisfactory, proceed to the 
next step.  If the boundaries are not reasonable, reset the number of regions, the ratio 
limits for each region, or both and reclassify again. 

(5)  This analysis will define the regional boundaries only.  To build a rainfall distribution for 
each of these regions, ratios of 5 minutes to 24 hours up to the 12- to 24-hour ratio are 
required.  If using ESRI GIS software, use the “Spatial Analyst Zonal Statistics as Table” 
command.  Use this command for each duration ratio and the regional distribution map 
(shapefile) to determine the mean ratio for each duration within each region.  Once the ratios 
for each duration have been computed, the ratios may be smoothed and a rainfall distribution 
developed based on principles outlined in this chapter. 

C.  Example Application  

(1)  The second project type is to divide a geographic area into a number of rainfall distribution 
regions.  This approach was used to develop four rainfall distribution regions for the States 
covered by NOAA Atlas 14 Volume 2, the Ohio Valley, and neighboring States. 

(2)  The intended purpose of the rainfall distributions was to use them in the EFH2 computer 
program.  The 25-year frequency was used as the basis for the rainfall distribution because 
many conservation practices are designed for the 25-year return period storm. 

(3)  The 25-year rainfall distribution is midway between the 1- and 100-year rainfall distributions.  
The 10- and 50-year rainfall distributions are generally close enough to the 25-year rainfall 
distribution that minor differences in the rainfall distribution and peak discharge will result. 
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(4)  The GIS data for the 5-minute to 24-hour durations were downloaded from the NOAA Atlas 
14 website and prepared using ESRI software.  A base map of States and counties was 
prepared in the same GIS map projection.  Ratios of 5 minutes to 24 hours, 10 minutes to 24 
hours, etc. were determined using ESRI “Spatial Analyst” commands. 

(5)  The 60-minute to 24-hour ratio was used to determine the boundaries of the rainfall 
distribution regions.  This was selected because the 5- through 30-minute rainfall values are 
determined based on a percentage of the 60-minute rainfall.  Therefore, the boundaries 
developed using the 60-minute ratio should be generally consistent with the boundaries 
developed by using any duration between 5 and 30 minutes.  Many watersheds where EFH 
chapter 2 is applied have a time of concentration less than 60 minutes. 

(6)  The 60-minute to 24-hour ratio ranged from 0.28 to 0.58 and was reclassified into four 
regions with 60-minute/24-hour ratios of less than 0.38, 0.38 to 0.43, 0.43 to 0.48, and greater 
than 0.48.  This analysis produced the map in figure 4-71.  The number of rainfall distribution 
regions and ratio limits for each one is a subjective decision that includes consideration of 
several factors.  Perhaps the major factor is the difference in peak discharge when changing 
from one distribution region to another.  Once a set of distribution regions and rainfall 
distributions are organized, tests can be run to determine this difference.  For example, if the 
peak discharge for region A is 100 cubic feet per second, region B is 90 cubic feet per 
second, region C is 80 cubic feet per second, and region D is 70 cubic feet per second, the 
potential error is plus or minus 5 cubic feet per second.  After converting this to a percentage 
difference, judge whether this is a reasonable percentage tolerance for hydrologic design.  A 
second consideration is the relative size of rainfall distribution regions.  It may not be 
reasonable to have one distribution region much larger or smaller than another.  A third 
consideration is the absolute limit of the ratios.  For example, if the ratio range for the most 
intense and least intense rainfall distribution is large, then the potential error in discharge may 
exceed the desired tolerance. 

(7)  Region A has 60-minute to 24-hour ratios greater than 0.48, region B has ratios between 0.43 
and 0.48, region C has ratios between 0.38 and 0.43, and region D has ratios less than 0.38. 

(8)  The next step was to determine the mean ratio of 5-minutes to 24-hour ratio to 12- to 24-hour 
in each of the four regions. 

(9)  The figure 4-72 was developed using ESRI “Spatial Analyst” commands. 
(10)  Region A has the most intense rainfall distribution because ratios in figure 4D–1 are higher.  

Region D has the least intense rainfall distribution. 
(11)  WinTR–20 both smooths the rainfall data and develops a rainfall distribution with ratio data 

such as contained in figure 4-72.  In order to do this, a NOAA Atlas 14 text file at any 
random location can be edited to include one column in figure 4-72.  Since the data are non-
dimensional, they may be multiplied by 10 (or any other number) and entered in the NOAA 
Atlas 14 text file.  The number 10 is practical because the 5-minute to 24-hour ratio of 0.143 
becomes 1.43 and the ratio for the 24-hour rainfall becomes 10.00.  The ratios are treated as 
rainfall in units of inches. 

(12)  The WinTR–20 NOAA Atlas 14 smoothing output file shows to what degree the original 
ratios are non-smooth.  WinTR–20 develops a 24-hour rainfall distribution at a time interval 
of 0.1 hours.  The rainfall distributions for region A (most intense rainfall distribution) and 
region D (least intense rainfall distribution) are plotted for comparison against the NRCS 
Types II and III in figure 4-73.  The region A distribution is slightly more intense than the 
NRCS Type II and the region D distribution is slightly less intense than the NRCS Type III. 
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Figure 4-71:  NOAA Atlas 14 Volume 2 Region, Rainfall Distribution Regions 
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Figure 4-72:  Mean Ratios for Four Rainfall Distribution Regions NOAA Atlas 14, Ohio Valley and 
Neighboring States 

Duration ratio Region A Region B Region C Region D 
5-min / 24-hr 0.143 0.121 0.105 0.094 
10-min / 24-hr 0.219 0.189 0.166 0.149 
15-min / 24-hr 0.272 0.237 0.210 0.188 
30-min / 24-hr 0.386 0.344 0.308 0.276 
60-min / 24-hr 0.502 0.453 0.409 0.366 
120-min / 24-hr 0.594 0.543 0.500 0.454 
3-hr / 24-hr 0.635 0.585 0.545 0.501 
6-hr / 24-hr 0.749 0.705 0.672 0.636 
12-hr / 24-hr 0.864 0.840 0.823 0.805 

 

 

D.  Discussion 

(1)  These rainfall distributions based on the 25-year return period are the default rainfall 
distributions, which may be selected and used in EFH-2, WinTR–55, and WinTR-20.  A 
different rainfall distribution, based on the 100-year storm for example, may be used in 
WinTR–55 or WinTR-20 by importing the downloaded NOAA Atlas 14 .csv file or by 
entering it as an historical storm distribution table. 

(2)  The rainfall distribution may be used to compute peak discharges in both WinTR–20 and 
WinTR–55.  To derive peak discharge curves for use in EFH chapter 2, WinTR–20 was run 
for a range of Ia/P (initial abstraction divided by precipitation) ratios and time of 
concentration. 

Figure 4-73:  Plot of NOAA Atlas 14 Regions A and D Rainfall Distributions 
Compared to Type II and Type III 
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(3)  There are several options to consider when defining the use of maps such as shown in figure 
4-74.  One is to publish the maps as is and request the user to determine which rainfall 
distribution to use based on the project location.  The maps were generated by GIS, so 
specific boundary lines are defined.  If a user has access to GIS, the process of determining 
where the project is situated is relatively simple.  Another possible use is to define rainfall 
distributions along county boundaries.  In this case, when a county has two or more rainfall 
distributions a decision needs to be made which distribution to use.  Generally, the dominant 
one or the most conservative one is selected.  However, this could cause some parts of a 
county to have a larger potential error in peak discharge. 

(4)  For ease in implementation, it may be helpful to ignore small pockets of different regional 
distributions that appear.  In addition to that, in some regions, NOAA Atlas 14 data have 
bull’s eyes that are caused by either high or low precipitation frequency results at individual 
rain gages with respect to surrounding rain gages.  It becomes difficult to specify exactly 
where these isolated boundaries are by visible physical attributes on the land (roads, rivers, 
mountains, county boundaries, etc.).  If this is the case, the potential maximum and minimum 
difference in peak discharge may be determined by setting up tests in hydrologic computer 
models.  For example, different rainfall distributions may be used in hydrologic computer 
models for various watershed sizes and rainfall depths and results compared. 
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